CSE373: Data Structures & Algorithms
Lecture 8: AVL Trees and Priority Queues

Nicki Dell
Spring 2014
Announcements

• Homework 1 feedback out soon (by Friday)
• Homework 2 due NOW (a few minutes ago!!!)
• Homework 3 out today (due April 30th) 😊

• TA Sessions
 – Tomorrow: BST and AVL Trees
 – Tuesday: Priority Queues and Binary Heaps

• Today
 – Finish AVL Trees
 – Start Priority Queues
The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties

1. Binary tree property (same as BST)
2. Order property (same as for BST)
3. Balance property:
 balance of every node is between -1 and 1

Need to keep track of height of every node and maintain balance as we perform operations.
AVL Trees: Insert

- Insert as in a BST (add a leaf in appropriate position)
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Unbalanced node’s left-left grandchild is too tall
 - Unbalanced node’s left-right grandchild is too tall
 - Unbalanced node’s right-left grandchild is too tall
 - Unbalanced node’s right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced
AVL Trees: Single rotation

- **Single rotation:**
 - The basic operation we’ll use to rebalance an AVL Tree
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child (always okay in a BST!)
 - Other sub-trees move in only way BST allows
The general left-left case

- Insertion into left-left grandchild causes an imbalance at node a
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child
 - Other sub-trees move in the only way BST allows:
 - using BST facts: X < b < Y < a < Z

- A single rotation restores balance at the node
 - To same height as before insertion, so ancestors now balanced
The general right-right case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code
Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: \texttt{insert(1), insert(6), insert(3)}

– First wrong idea: single rotation like we did for left-left

Violates order property!
Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree.

Simple example: `insert(1), insert(6), insert(3)`
- Second wrong idea: single rotation on the child of the unbalanced node

Still unbalanced!
Sometimes two wrongs make a right 😊

- First idea violated the order property
- Second idea didn’t fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
- Double rotation:
 1. Rotate problematic child and grandchild
 2. Then rotate between self and new child
The general right-left case
Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

 - Easier to remember than you may think:
 Move c to grandparent’s position
 Put a, b, X, U, V, and Z in the only legal positions for a BST
The last case: left-right

- Mirror image of right-left
 - Again, no new concepts, only new code to write
AVL Trees: efficiency

- Worst-case complexity of `find`: $O(\log n)$
 - Tree is balanced

- Worst-case complexity of `insert`: $O(\log n)$
 - Tree starts balanced
 - A rotation is $O(1)$ and there’s an $O(\log n)$ path to root
 - Tree ends balanced

- Worst-case complexity of `buildTree`: $O(n \log n)$

Takes some more rotation action to handle `delete`...
Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of `insert` and `delete`

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If amortized (later, I promise) logarithmic time is enough, use splay trees (in the text)
Done with AVL Trees (….phew!)

next up...

Priority Queues ADT
(Homework 3 😊)
A new ADT: Priority Queue

• A priority queue holds compare-able data

 – Like dictionaries, we need to compare items
 • Given x and y, is x less than, equal to, or greater than y
 • Meaning of the ordering can depend on your data

 – Integers are comparable, so will use them in examples
 • But the priority queue ADT is much more general
 • Typically two fields, the priority and the data
Priorities

• Each item has a “priority”
 – In our examples, the lesser item is the one with the greater priority
 – So “priority 1” is more important than “priority 4”
 – (Just a convention, think “first is best”)

• Operations:
 – insert
 – deleteMin
 – is_empty

• Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 – Can resolve ties arbitrarily
Example

\text{insert } x_1 \text{ with priority 5}
\text{insert } x_2 \text{ with priority 3}
\text{insert } x_3 \text{ with priority 4}
\text{a = deleteMin // x}2
\text{b = deleteMin // x}3
\text{insert } x_4 \text{ with priority 2}
\text{insert } x_5 \text{ with priority 6}
\text{c = deleteMin // x}4
\text{d = deleteMin // x}1

- Analogy: \text{insert} is like \text{enqueue}, \text{deleteMin} is like \text{dequeue}
 - But the whole point is to use priorities instead of FIFO
Applications

Like all good ADTs, the priority queue arises often
 – Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system
 – “critical” before “interactive” before “compute-intensive”
 – Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?

• Forward network packets in order of urgency

• Select most frequent symbols for data compression

• Sort (first insert all, then repeatedly deleteMin)
 – Much like Homework 1 uses a stack to implement reverse
Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let’s analyze some “obvious” ideas for \(n \) data items
 - All times worst-case; assume arrays “have room”

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end (O(1))</td>
<td>search (O(n))</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front (O(1))</td>
<td>search (O(n))</td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift (O(n))</td>
<td>move front (O(1))</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place (O(n))</td>
<td>remove at front (O(1))</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place (O(n))</td>
<td>leftmost (O(n))</td>
</tr>
<tr>
<td>AVL tree</td>
<td>put in right place (O(\log n))</td>
<td>leftmost (O(\log n))</td>
</tr>
</tbody>
</table>
More on possibilities

• One more idea: if priorities are 0, 1, …, k can use an array of k lists
 – insert: add to front of list at `arr[priority]`, $O(1)$
 – deleteMin: remove from lowest non-empty list $O(k)$

• We are about to see a data structure called a “binary heap”
 – Another binary tree structure with specific properties
 – $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 • Possible because we don’t support unneeded operations; no need to maintain a full sort
 • Very good constant factors
 – If items arrive in random order, then insert is $O(1)$ on average
 • Because 75% of nodes in bottom two rows
Our data structure

A binary min-heap (or just binary heap or just heap) has:

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is less important than the priority of its parent
 - Not a binary search tree

So:
- Where is the highest-priority item?
- What is the height of a heap with \(n \) items?
Operations: basic idea

• **findMin**: return root.data
• **deleteMin**:
 1. answer = root.data
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
• **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
• Preserve structure property
• Break and restore heap property
DeleteMin

Delete (and later return) value at root node
DeleteMin: Keep the Structure Property

• We now have a “hole” at the root
 – Need to fill the hole with another value

• Keep structure property: When we are done, the tree will have one less node and must still be complete

• Pick the last node on the bottom row of the tree and move it to the “hole”
DeleteMin: Restore the Heap Property

Percolate down:
1. Keep comparing priority of item with both children
2. If priority is less important, swap with the most important child and go down one level
3. Done if both children are less important than the item or we've reached a leaf node

Why is this correct?
What is the run time?
DeleteMin: Run Time Analysis

- Run time is $O(\text{height of heap})$
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 - height = $\lceil \log_2(n) \rceil$
- Run time of `deleteMin` is $O(\log n)$
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
Insert: Maintain the Structure Property

• There is only one valid tree shape after we add one more node

• So put our new data there and then focus on restoring the heap property
Insert: Restore the heap property

Percolate up:
- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root

What is the running time?
Like `deleteMin`, worst-case time proportional to tree height: $O(\log n)$
Summary

• **Priority Queue ADT:**
 - `insert` comparable object,
 - `deleteMin`

• **Binary heap data structure:**
 - Complete binary tree
 - Each node has less important priority value than its parent

• `insert` and `deleteMin` operations = $O(\text{height-of-tree}) = O(\log n)$
 - `insert`: put at new last position in tree and percolate-up
 - `deleteMin`: remove root, put last element at root and percolate-down