CSE373: Data Structures & Algorithms

Lecture 6: Binary Search Trees

Nicki Dell

Spring 2014
Announcements

• HW2 due start of class Wednesday 16th April
• TA sessions next week
 – Tuesday: More help with homework 2
 – Thursday: Binary Search Trees and AVL Trees
Previously on CSE 373

– Dictionary ADT
 • stores (key, value) pairs
 • find, insert, delete

– Trees
 • Terminology
 • Binary Trees
Reminder: Tree terminology

- **Node / Vertex**
- **Left subtree**
- **Right subtree**
- **Root**
- **Edges**
- **Leaves**
Example Tree Calculations

Recall: **Height** of a tree is the **maximum** number of edges from the **root** to a **leaf**.

What is the **height** of this tree?

Height = 0

Height = 1

What is the **depth** of node G?

Depth = 2

What is the **depth** of node L?

Depth = 4

Height = 4
Binary Trees

- **Binary tree**: Each node has at most 2 children (branching factor 2)

- Binary tree is
 - A root *(with data)*
 - A left subtree *(may be empty)*
 - A right subtree *(may be empty)*

- Special Cases

 ![Complete Tree](image1)
 ![Perfect Tree](image2)
 ![Full Tree](image3)
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree

 + * 2 4 5

- **In-order:** left subtree, root, right subtree

 2 * 4 + 5

- **Post-order:** left subtree, right subtree, root

 2 4 * 5 +
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

A = current node \hspace{1cm} A = processing (on the call stack)

A = completed node \hspace{1cm} ✓ = element has been processed
void inOrderTraversal(Node t) {
 if (t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A = current node
A = processing (on the call stack)
A = completed node
✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- A = current node
- A = processing (on the call stack)
- A = completed node
- ✓ = element has been processed

Spring 2014

CSE373: Data Structures & Algorithms
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t){
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- A = current node
- A = processing (on the call stack)
- A = completed node
- ✓ = element has been processed

D B E
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- A = current node
- A = processing (on the call stack)
- ✓ = element has been processed

D B E A
void inOrderTraversal(Node t) {
 if (t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

A = current node
A = processing (on the call stack)
A = completed node
✓ = element has been processed

DBEAFCD
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- A = current node
- A = processing (on the call stack)
- A = completed node
- ✓ = element has been processed

D B E A F C G
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

Sometimes order doesn’t matter
- Example: sum all elements

Sometimes order matters
- Example: evaluate an expression tree
Binary **Search Tree (BST)** Data Structure

- **Structure property (binary tree)**
 - Each node has \(\leq 2 \) children
 - Result: keeps operations simple

- **Order property**
 - All keys in left subtree smaller than node’s key
 - All keys in right subtree larger than node’s key
 - Result: easy to find any given key

A *binary search tree* is a type of binary tree (but not all binary trees are binary search trees!)
Are these BSTs?

Activity!
Find in BST, Recursive

```java
Data find(Key key, Node root){
    if(root == null)
        return null;
    if(key < root.key)
        return find(key,root.left);
    if(key > root.key)
        return find(key,root.right);
    return root.data;
}
```

What is the running time?

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)

![BST Diagram]
Find in BST, Iterative

```java
Data find(Key key, Node root) {
    while (root != null && root.key != key) {
        if (key < root.key) {
            root = root.left;
        } else {
            root = root.right;
        }
    }
    if (root == null) {
        return null;
    }
    return root.data;
}
```

Worst case running time is $O(n)$.
- Happens if the tree is very lopsided (e.g. list)
Bonus: Other BST “Finding” Operations

- **FindMin**: Find *minimum* node
 - Left-most node

- **FindMax**: Find *maximum* node
 - Right-most node
Insert in BST

Again… worst case running time is $O(n)$, which may happen if the tree is not balanced.
Deletion in BST

Why might deletion be harder than insertion?
Removing an item may disrupt the tree structure!
Deletion in BST

• Basic idea: find the node to be removed, then “fix” the tree so that it is still a binary search tree

• Three potential cases to fix:
 – Node has no children (leaf)
 – Node has one child
 – Node has two children
Deletion – The Leaf Case

delete(17)
Deletion – The One Child Case

delete(15)
Deletion – The One Child Case

delete(15)
Deletion – The Two Child Case

What can we replace 5 with?

delete(5)
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:
• successor minimum node from right subtree
 \(\text{findMin}\text{(node.right)} \)

• predecessor maximum node from left subtree
 \(\text{findMax}\text{(node.left)} \)

Now delete the original node containing successor or predecessor
Deletion: The Two Child Case (example)

delete(23)

```
       12
      /  \
     5    23
    / \   / \ \
   2   9  18  30
  /     /     /   \
 7  10  15  19  25  32
```
Deletion: The Two Child Case (example)

delete(23)
Deletion: The Two Child Case (example)

delete(23)
Deletion: The Two Child Case (example)

```
delete(23)
```

Success! 🙂
Lazy Deletion

- Lazy deletion can work well for a BST
 - Simpler
 - Can do “real deletions” later as a batch
 - Some inserts can just “undelete” a tree node

- But
 - Can waste space and slow down find operations
 - Make some operations more complicated:
 - e.g., findMin and findMax?
BuildTree for BST

- Let's consider `buildTree`
 - Insert all, starting from an empty tree

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for this kind of sorted input? \(O(n^2) \)
 - Not a happy place
 - Is inserting in the reverse order any better?
BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

- What we if could somehow re-arrange them
 - median first, then left median, right median, etc.
 - 5, 3, 7, 2, 1, 4, 8, 6, 9

 - What tree does that give us?

 - What big-O runtime?

 > \(O(n \log n) \), definitely better