CSE373: Data Structures and Algorithms

Lecture 4: Asymptotic Analysis

Nicki Dell

Spring 2014
Efficiency

- What does it mean for an algorithm to be *efficient*?
 - We primarily care about *time* (and sometimes *space*).
- Is the following a good definition?
 - “An algorithm is efficient if, when implemented, it runs quickly on real input instances”
 - Where and how well is it implemented?
 - What constitutes “real input?”
 - How does the algorithm *scale* as input size changes?
Gauging efficiency (performance)

• Uh, why not just run the program and time it?
 – Too much *variability*, not reliable or *portable*:
 • Hardware: processor(s), memory, etc.
 • OS, Java version, libraries, drivers
 • Other programs running
 • Implementation dependent
 – Choice of input
 • Testing (inexhaustive) may *miss* worst-case input
 • Timing does not *explain* relative timing among inputs (what happens when \(n \) doubles in size)
• Often want to evaluate an *algorithm*, not an implementation
 – Even *before* creating the implementation ("coding it up")
Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

– Various possible answers (clarity, security, …)
– But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

We will focus on large inputs because probably any algorithm is “plenty good” for small inputs (if \(n \) is 10, probably anything is fast)

– Time difference really shows up as \(n \) grows

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and timing it on some test cases”

- Can do analysis before coding!
We usually care about worst-case running times

- Has proven reasonable in practice
 - Provides some guarantees
- Difficult to find a satisfactory alternative
 - What about average case?
 - Difficult to express full range of input
 - Could we use randomly-generated input?
 - May learn more about generator than algorithm
Example

Find an integer in a sorted array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    ???
}
```
Linear search

Find an integer in a sorted array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    for (int i = 0; i < arr.length; ++i)
        if (arr[i] == k)
            return true;
    return false;
}
```

Best case?
k is in arr[0]
6ish steps
= \(O(1)\)

Worst case?
k is not in arr
6ish*(arr.length)
= \(O(arr.length)\)
Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;  // i.e., lo+(hi-lo)/2
    if(lo==hi)        return false;
    if(arr[mid]==k)   return true;
    if(arr[mid]< k)   return help(arr, k, mid+1, hi);
    else              return help(arr, k, lo, mid);
}
```
Binary search

Best case: 8ish steps = $O(1)$

Worst case: $T(n) = 10ish$ steps + $T(n/2)$ where n is hi-lo

- $O(\log n)$ where n is array.length
- Solve recurrence equation to know that...

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 - \(T(n) = 10 + T(n/2) \quad T(1) = 8 \)

2. “Expand” the original relation to find an equivalent general expression *in terms of the number of expansions*.
 - \(T(n) = 10 + 10 + T(n/4) \)
 = \(10 + 10 + 10 + T(n/8) \)
 = \(\ldots \)
 = \(10k + T(n/(2^k)) \)

3. Find a closed-form expression by setting *the number of expansions* to a value (e.g. 1) which reduces the problem to a base case.
 - \(n/(2^k) = 1 \) means \(n = 2^k \) means \(k = \log_2 n \)
 - So \(T(n) = 10 \log_2 n + T(1) \)
 - So \(T(n) = 10 \log_2 n + 8 \) (get to base case and do it)
 - So \(T(n) \) is \(O(\log n) \)
Ignoring constant factors

- So binary search is $O(\log n)$ and linear is $O(n)$
 - But which is faster?

- Could depend on constant factors
 - How many assignments, additions, etc. for each n
 - E.g. $T(n) = 5,000,000n$ vs. $T(n) = 5n^2$
 - And could depend on overhead unrelated to n
 - E.g. $T(n) = 5,000,000 + \log n$ vs. $T(n) = 10 + n$

- But there exists some n_0 such that for all $n > n_0$ binary search wins

- Let’s play with a couple plots to get some intuition…
Example

• Let’s try to “help” linear search
 – Run it on a computer 100x as fast (say 2014 model vs. 1994)
 – Use a new compiler/language that is 3x as fast
 – Be a clever programmer to eliminate half the work
 – So doing each iteration is 600x as fast as in binary search
Big-Oh relates functions

We use O on a function $f(n)$ (for example n^2) to mean *the set of functions with asymptotic behavior less than or equal to* $f(n)$

So $(3n^2+17)$ is in $O(n^2)$
- $3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:
- $(3n^2+17)$ is $O(n^2)$
- $(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$
Big-O, formally

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that

$$g(n) \leq c \cdot f(n) \quad \text{for all } n \geq n_0$$

- To show $g(n)$ is in $O(f(n))$, pick a c large enough to “cover the constant factors” and n_0 large enough to “cover the lower-order terms”
 - Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^2$
 - $c=5$ and $n_0 = 10$ is more than good enough
 - $(3 \cdot 10^2) + 17 \leq 5 \cdot 10^2$ so $3n^2 + 17$ is $O(n^2)$
- This is “less than or equal to”
 - So $3n^2 + 17$ is also $O(n^5)$ and $O(2^n)$ etc.
 - But usually we’re interested in the tightest upper bound.
Example 1, using formal definition

• Let $g(n) = 1000n$ and $f(n) = n^2$
 – To prove $g(n)$ is in $O(f(n))$, find a valid c and n_0
 – The “cross-over point” is $n=1000$
 • $g(n) = 1000 \times 1000$ and $f(n) = 1000^2$
 – So we can choose $n_0 = 1000$ and $c=1$
 • Many other possible choices, e.g., larger n_0 and/or c

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that

\[g(n) \leq c \cdot f(n) \quad \text{for all } n \geq n_0 \]
Example 2, using formal definition

• Let \(g(n) = n^4 \) and \(f(n) = 2^n \)
 - To prove \(g(n) \) is in \(O(f(n)) \), find a valid \(c \) and \(n_0 \)
 - We can choose \(n_0 = 20 \) and \(c = 1 \)
 • \(g(n) = 20^4 \) vs. \(f(n) = 1 \times 2^{20} \)

• Note: There are many correct possible choices of \(c \) and \(n_0 \)

Definition: \(g(n) \) is in \(O(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that

\[
g(n) \leq c f(n) \quad \text{for all } n \geq n_0
\]
What’s with the c

• The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity.

• Consider:

 $g(n) = 7n + 5$

 $f(n) = n$

 – These have the same asymptotic behavior (linear)
 • So $g(n)$ is in $O(f(n))$ even through $g(n)$ is always larger
 • The c allows us to provide a coefficient so that $g(n) \leq c f(n)$

 – In this example:
 • To prove $g(n)$ is in $O(f(n))$, have $c = 12$, $n_0 = 1$
 $$(7*1)+5 \leq 12*1$$
What you can drop

- Eliminate coefficients because we don’t have units anyway
 - $3n^2$ versus $5n^2$ doesn’t mean anything when we have not specified the cost of constant-time operations

- Eliminate low-order terms because they have vanishingly small impact as n grows

- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^n is not $O(2^n)$

(This all follows from the formal definition)
More Asymptotic Notation

- **Upper bound:** $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
 - $g(n)$ is in $O(f(n))$ if there exist constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$

- **Lower bound:** $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
 - $g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \geq c f(n)$ for all $n \geq n_0$

- **Tight bound:** $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
 - $g(n)$ is in $\theta(f(n))$ if both $g(n)$ is in $O(f(n))$ and $g(n)$ is in $\Omega(f(n))$
Correct terms, *in theory*

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$
- Since a linear algorithm is also $O(n^5)$, it’s tempting to say “this algorithm is exactly $O(n)$”
- That doesn’t mean anything, say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:
- “little-oh”: intersection of “big-Oh” and *not* “big-Theta”
 - *For all* c, there exists an n_0 such that… ≤
 - Example: array sum is $o(n^2)$ but not $o(n)$
- “little-omega”: intersection of “big-Omega” and *not* “big-Theta”
 - *For all* c, there exists an n_0 such that… ≥
 - Example: array sum is $\omega(\log n)$ but not $\omega(n)$
What we are analyzing

- The most common thing to do is give an O upper bound to the worst-case running time of an algorithm.

- Example: binary-search algorithm
 - Common: $O(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common (but very good to know): the find-in-sorted-array problem is $\Omega(\log n)$ in the worst-case
 - No algorithm can do better
 - A problem cannot be $O(f(n))$ since you can always make a slower algorithm.
Other things to analyze

• Space instead of time
 – Remember we can often use space to gain time

• Average case
 – Sometimes only if you assume something about the probability distribution of inputs
 – Sometimes uses randomization in the algorithm
 • Will see an example with sorting
 – Sometimes an amortized guarantee
 • Average time over any sequence of operations
 • Will discuss in a later lecture
Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)
• Time or space (usually time)
 – Or power or dollars or …
• Best-, worst-, or average-case (usually worst)
• Upper-, lower-, or tight-bound (usually upper or tight)
Big-Oh Caveats

- Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick
- But you can “abuse” it to be misled about trade-offs
- Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the “cross-over” point is around 5×10^{17}
 - So if you have input size less than 2^{58}, prefer $n^{1/10}$
- For small n, an algorithm with worse asymptotic complexity might be faster
 - If you care about performance for small n then the constant factors can matter
Addendum: Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical foundation
 – Examine the algorithm itself, not the implementation
 – Reason about (even prove) performance as a function of n

• Timing also has its place
 – Compare implementations
 – Focus on data sets you care about (versus worst case)
 – Determine what the constant factors “really are”