CSE373: Data Structures & Algorithms
Lecture 17: Shortest Paths

Nicki Dell
Spring 2014
Announcements

• Midterm on Friday May 9th
 – TAs proctoring the exam
 – Be on time!!

• Homework 4 partner selection due TODAY!
• Homework 4 due next Wednesday, May 14th
Graph Traversals

For an arbitrary graph and a starting node v, find all nodes reachable from v (i.e., there exists a path from v).

Basic idea:
- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Important Graph traversal algorithms:
- “Depth-first search” “DFS”: recursively explore one part before going back to the other parts not yet explored
- “Breadth-first search” “BFS”: explore areas closer to the start node first
Example: Another Depth First Search

• A tree is a graph and DFS and BFS are particularly easy to “see”

```java
DFS2(Node start) {
    initialize stack s and push start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

• Could be other correct DFS traversals (e.g. go to right nodes first)
• The marking is because we support arbitrary graphs and we want to process each node exactly once
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

- A B C D E F G H
- A “level-order” traversal
Comparison

• Breadth-first always finds shortest paths, i.e., “optimal solutions”
 – Better for “what is the shortest path from x to y”

• But depth-first can use less space in finding a path
 – If longest path in the graph is p and highest out-degree is d
 then DFS stack never has more than d*p elements
 – But a queue for BFS may hold O(|V|) nodes

• A third approach:
 – Iterative deepening (IDFS):
 • Try DFS but disallow recursion more than k levels deep
 • If that fails, increment k and start the entire search over
 – Like BFS, finds shortest paths. Like DFS, less space.
Saving the Path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node x to node y?”

• But what if we want to actually output the path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• How to do it:
 – Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 – When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Single source shortest paths

• Done: BFS to find the minimum path length from \(v \) to \(u \) in \(O(|E|+|V|) \)

• Actually, can find the minimum path length from \(v \) to every node
 – Still \(O(|E|+|V|) \)
 – No faster way for a “distinguished” destination in the worst-case

• Now: Weighted graphs

 Given a weighted graph and node \(v \),
 find the minimum-cost path from \(v \) to every node

• As before, asymptotically no harder than for one destination
Applications

• Driving directions

• Cheap flight itineraries

• Network routing

• Critical paths in project management
Not as easy as BFS

Why BFS won’t work: Shortest path may not have the fewest edges
 – Annoying when this happens with costs of flights

We will assume there are no negative weights
• *Problem* is *ill-defined* if there are negative-cost cycles
• *Today’s algorithm* is *wrong* if edges can be negative
 – There are other, slower (but not terrible) algorithms
Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)
 – Truly one of the “founders” of computer science; this is just one of his many contributions
 – Many people have a favorite Dijkstra story, even if they never met him

Computer science is no more about computers than astronomy is about telescopes.

(Edsger Dijkstra)
Dijkstra’s Algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a “best distance so far”
 - A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
 - A series of steps
 - At each one the locally optimal choice is made
Dijkstra’s Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the “cloud” of known vertices
 - Update distances for nodes with edges from v
- That’s it! (But we need to prove it produces correct answers)
The Algorithm

1. For each node \(v \), set \(v\text{.cost} = \infty \) and \(v\text{.known} = \text{false} \)
2. Set \(\text{source}\text{.cost} = 0 \)
3. While there are unknown nodes in the graph
 a) Select the unknown node \(v \) with lowest cost
 b) Mark \(v \) as known
 c) For each edge \((v,u)\) with weight \(w \),
 \[
 \begin{align*}
 c_1 &= v\text{.cost} + w \quad // \text{cost of best path through } v \text{ to } u \\
 c_2 &= u\text{.cost} \quad // \text{cost of best path to } u \text{ previously known}
 \end{align*}
 \]
 if \(c_1 < c_2 \){ // if the path through \(v \) is better
 \[
 \begin{align*}
 u\text{.cost} &= c_1 \\
 u\text{.path} &= v \quad // \text{for computing actual paths}
 \end{align*}
 \]
Example #1

Order Added to Known Set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A
Example #1

Order Added to Known Set:
A, C

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>≤ 4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>≤ 12</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:
A, C, B

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>≤ 4</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>≤ 12</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>≤ 4</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B, D

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B, D, F

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>≤ 7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>(\leq 12)</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>(\leq 8)</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>

Order Added to Known Set:

A, C, B, D, F, H
Example #1

Order Added to Known Set:

A, C, B, D, F, H, G
Example #1

Order Added to Known Set:
A, C, B, D, F, H, G, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

- While a vertex is still not known, another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
 - A detail about how the algorithm works (client doesn’t care)
 - Not used by the algorithm (implementation doesn’t care)
 - It is sorted by path-cost, resolving ties in some way
 - Helps give intuition of why the algorithm works
Interpreting the Results

• Now that we’re done, how do we get the path from, say, A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Stopping Short

• How would this have worked differently if we were only interested in:
 – The path from A to G?
 – The path from A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E
Example #2

Order Added to Known Set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>≤ 2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>≤ 1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A, D

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>≤ 2</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 7</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>≤6</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>≤ 3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E, B

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E, B, F
Example #2

Order Added to Known Set:
A, D, C, E, B, F, G

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #3

How will the best-cost-so-far for Y proceed?

Is this expensive?
Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive?
Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once
A Greedy Algorithm

• Dijkstra’s algorithm
 – For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges

• An example of a greedy algorithm:
 – At each step, always does what seems best at that step
 • A locally optimal step, not necessarily globally optimal
 – Once a vertex is known, it is not revisited
 • Turns out to be globally optimal
Where are We?

• Had a problem: Compute shortest paths in a weighted graph with no negative weights

• Learned an algorithm: Dijkstra’s algorithm

• What should we do after learning an algorithm?
 – Prove it is correct
 • Not obvious!
 • We will sketch the key ideas
 – Analyze its efficiency
 • Will do better by using a data structure we learned earlier!
Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
 – True initially: shortest path to start node has cost 0
 – If it stays true every time we mark a node “known”, then by induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a shorter path later!
 – This holds only because Dijkstra’s algorithm picks the node with the next shortest path-so-far
 – The proof is by contradiction…
Suppose \(v \) is the next node to be marked known (“added to the cloud”)

- The best-known path to \(v \) must have only nodes “in the cloud”
 - Else we would have picked a node closer to the cloud than \(v \)
- Suppose the actual shortest path to \(v \) is different
 - It won’t use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let \(w \) be the first non-cloud node on this path. The part of the path up to \(w \) is already known and must be shorter than the best-known path to \(v \). So \(v \) would not have been picked. Contradiction.
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
 – Notice each edge is processed only once

```python
dijkstra(Graph G, Node start) {
    for each node: x.cost = infinity, x.known = false
    start.cost = 0
    while (not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b, a) in G
            if (!a.known)
                if (b.cost + weight((b, a)) < a.cost) {
                    a.cost = b.cost + weight((b, a))
                    a.path = b
                }
    }
}
```
Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```java
dijkstra(Graph G, Node start) {
    for each node: x.cost=∞, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

$O(|V|)$
Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

```java
dijkstra(Graph G, Node start) {
    for each node: x.cost=\text{infinity}, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

\(\text{O(|V|)}\)
\(\text{O(|V|^2)}\)
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
 – Notice each edge is processed only once

```plaintext
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

O(|V|)
O(|V|^2)
O(|E|)
Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

- $O(|V|)$
- $O(|V|^2)$
- $O(|E|)$
- $O(|V|^2)$
Improving asymptotic running time

- So far: $O(|V|^2)$

- We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges

- Solution?
Improving (?) asymptotic running time

• So far: $O(|V|^2)$

• We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 – We solved it with a queue of zero-degree nodes
 – But here we need the lowest-cost node and costs can change as we process edges

• Solution?
 – A priority queue holding all unknown nodes, sorted by cost
 – But must support `decreaseKey` operation
 • Must maintain a reference from each node to its current position in the priority queue
 • Conceptually simple, but can be a pain to code up
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```python
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) {
        b = deleteMin()
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    decreaseKey(a, "new cost - old cost")
                    a.path = b
                }
    }
}
```
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=\infty, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost) {
 decreaseKey(a, “new cost – old cost”)
 a.path = b
 }
 }
}

O(|V|)
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=Infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost) {
 decreaseKey(a,"new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,"new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

\[
dijkstra(G, \text{Node start}) \{
 \text{for each node: } x.\text{cost}=\infty, \ x.\text{known}=\text{false}
 \text{start.cost} = 0
 \text{build-heap with all nodes}
 \text{while(heap is not empty) } \{
 b = \text{deleteMin()}
 b.\text{known} = \text{true}
 \text{for each edge } (b,a) \text{ in G}
 \quad \text{if(!a.\text{known})}
 \quad \quad \text{if}(b.\text{cost} + \text{weight}((b,a)) < a.\text{cost}) \{
 \text{decreaseKey(a, "new cost - old cost")}
 a.\text{path} = b
 \}
 \}
\]

\[
O(|V|)
\]

\[
O(|V|\log|V|)
\]

\[
O(|E|\log|V|)
\]

\[
O(|V|\log|V| + |E|\log|V|)
\]
Dense vs. sparse again

- First approach: $O(|V|^2)$

- Second approach: $O(|V|\log|V| + |E|\log|V|)$

- So which is better?
 - Sparse: $O(|V|\log|V| + |E|\log|V|)$ (if $|E| > |V|$, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$

- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for “normal graphs”, we might call `decreaseKey` rarely (or not percolate far), making $|E|\log|V|$ more like $|E|$
Spanning Trees

- A simple problem: Given a connected undirected graph $G=(V,E)$, find a minimal subset of edges such that G is still connected
 - A graph $G_2=(V,E_2)$ such that G_2 is connected and removing any edge from E_2 makes G_2 disconnected
Observations

1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
 - So $|E| \geq |V|-1$

4. A tree with $|V|$ nodes has $|V|-1$ edges
 - So every solution to the spanning tree problem has $|V|-1$ edges
Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A “phone tree” so everybody gets the message and no unnecessary calls get made
 - Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
 - Will do that next, after intuition from the simpler case
Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle