Announcements

• Start homework 3 soon…..
 – Priority queues and binary heaps

• TA sessions
 – Tuesday: Priority queues and binary heaps
 – Thursday: Disjoint sets and union-find ADT

• Nicki away next week on Monday and Wednesday
 – Aaron Bauer will teach you about hashing
Where we are

Last lecture:
• Priority queues and binary heaps

Today:
• Disjoint sets
• The union-find ADT for disjoint sets

Next lecture:
• Basic implementation of the union-find ADT with “up trees”
• Optimizations that make the implementation much faster
Disjoint sets

• A set is a collection of elements (no-repeats)

• In computer science, two sets are said to be disjoint if they have no element in common.
 • \(S_1 \cap S_2 = \emptyset \)

• For example, \(\{1, 2, 3\} \) and \(\{4, 5, 6\} \) are disjoint sets.
• For example, \(\{x, y, z\} \) and \(\{t, u, x\} \) are not disjoint.
Partitions

A partition P of a set S is a set of sets $\{S_1, S_2, \ldots, S_n\}$ such that every element of S is in exactly one S_i

Put another way:

- $S_1 \cup S_2 \cup \ldots \cup S_k = S$
- $i \neq j$ implies $S_i \cap S_j = \emptyset$ (sets are disjoint with each other)

Example:

- Let S be $\{a, b, c, d, e\}$
- One partition: $\{a\}$, $\{d, e\}$, $\{b, c\}$
- Another partition: $\{a, b, c\}$, \emptyset, $\{d\}$, $\{e\}$
- A third: $\{a, b, c, d, e\}$
- Not a partition: $\{a, b, d\}$, $\{c, d, e\}$ element d appears twice
- Not a partition of S: $\{a, b\}$, $\{e, c\}$ missing element d
Binary relations

- $S \times S$ is the set of all pairs of elements of S (cartesian product)
 - Example: If $S = \{a, b, c\}$ then $S \times S = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\}$

- A binary relation R on a set S is any subset of $S \times S$
 - i.e. a collection of ordered pairs of elements of S.
 - Write $R(x,y)$ to mean (x,y) is “in the relation”
 - (Unary, ternary, quaternary, ... relations defined similarly)

- Examples for $S =$ people-in-this-room
 - Sitting-next-to-each-other relation
 - First-sitting-right-of-second relation
 - Went-to-same-high-school relation
 - First-is-younger-than-second relation
Properties of binary relations

- A relation R over set S is **reflexive** means $R(a,a)$ for all a in S
 - e.g. The relation “\leq“ on the set of integers $\{1, 2, 3\}$ is
 \{<1, 1>, <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 3>\}
 It is reflexive because $<1, 1>$, $<2, 2>$, $<3, 3>$ are in this relation.

- A relation R on a set S is **symmetric** if and only if for any a and b in S, whenever $<a, b>$ is in R, $<b, a>$ is in R.
 - e.g. The relation “$=$“ on the set of integers $\{1, 2, 3\}$ is
 \{<1, 1>, <2, 2>, <3, 3>\} and it is symmetric.
 - The relation "being acquainted with" on a set of people is symmetric.

- A binary relation R over set S is **transitive** means:
 If $R(a,b)$ and $R(b,c)$ then $R(a,c)$ for all a,b,c in S
 - e.g. The relation “\leq“ on the set of integers $\{1, 2, 3\}$ is transitive, because for $<1, 2>$ and $<2, 3>$ in “\leq“, $<1, 3>$ is also in “\leq“ (and similarly for the others)
Equivalence relations

• A binary relation R is an equivalence relation if R is reflexive, symmetric, and transitive.

• Examples
 – Same gender
 – Connected roads in the world
 – "Is equal to" on the set of real numbers
 – "Has the same birthday as" on the set of all people
 – ...
Punch-line

- Equivalence relations give rise to partitions.

- Every partition induces an equivalence relation
- Every equivalence relation induces a partition

- Suppose \(P=\{S_1,S_2,\ldots,S_n\} \) is a partition
 - Define \(R(x,y) \) to mean \(x \) and \(y \) are in the same \(S_i \)
 - \(R \) is an equivalence relation

- Suppose \(R \) is an equivalence relation over \(S \)
 - Consider a set of sets \(S_1,S_2,\ldots,S_n \) where
 (1) \(x \) and \(y \) are in the same \(S_i \) if and only if \(R(x,y) \)
 (2) Every \(x \) is in some \(S_i \)
 - This set of sets is a partition
Example

• Let S be {a, b, c, d, e}

• One partition: {a, b, c}, {d}, {e}

• The corresponding equivalence relation:
 (a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, d), (e, e)
The Union-Find ADT

- The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence Relation") keeps track of a set of elements partitioned into a number of disjoint subsets.

- Many uses (which is why an ADT taught in CSE 373):
 - Road/network/graph connectivity (will see this again)
 - “connected components” e.g., in social network
 - Partition an image by connected-pixels-of-similar-color
 - Type inference in programming languages

- Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements
Union-Find Operations

• Given an unchanging set S, create an initial partition of a set
 – Typically each item in its own subset: \{a\}, \{b\}, \{c\}, …
 – Give each subset a “name” by choosing a representative element

• Operation find takes an element of S and returns the representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes one larger subset
 – A different partition with one fewer set
 – Affects result of subsequent find operations
 – Choice of representative element up to implementation
Example

• Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

• Let initial partition be (will highlight representative elements red)
 \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}

• $\text{union}(2, 5)$:
 \{1\}, \{2, 5\}, \{3\}, \{4\}, \{6\}, \{7\}, \{8\}, \{9\}

• $\text{find}(4) = 4$, $\text{find}(2) = 2$, $\text{find}(5) = 2$

• $\text{union}(4, 6)$, $\text{union}(2, 7)$
 \{1\}, \{2, 5, 7\}, \{3\}, \{4, 6\}, \{8\}, \{9\}

• $\text{find}(4) = 6$, $\text{find}(2) = 2$, $\text{find}(5) = 2$

• $\text{union}(2, 6)$
 \{1\}, \{2, 4, 5, 6, 7\}, \{3\}, \{8\}, \{9\}
No other operations

• All that can “happen” is sets get unioned
 – No “un-union” or “create new set” or …

• As always: trade-offs
 – Implementations will exploit this small ADT

• Surprisingly useful ADT
 – But not as common as dictionaries or priority queues
Example application: maze-building

- Build a random maze by erasing edges

 - Possible to get from anywhere to anywhere
 - Including “start” to “finish”
 - No loops possible without backtracking
 - After a “bad turn” have to “undo”
Maze building

Pick start edge and end edge

Start

End
Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get from start to finish
Problems with this approach

1. How can you tell when there is a path from start to finish?
 – We do not really have an algorithm yet

2. We could have cycles, which a “good” maze avoids
 – Want one solution and no cycles
Revised approach

• Consider edges in random order (i.e. pick an edge)
• Only delete an edge if it introduces no cycles (how? TBD)
• When done, we will have a way to get from any place to any other place (including from start to end points)

![Diagram of maze with paths from start to end]
Cells and edges

- Let’s number each cell
 - 36 total for 6 x 6
- An (internal) edge \((x,y)\) is the line between cells \(x\) and \(y\)
 - 60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Start

End
The trick

- Partition the cells into disjoint sets
 - Two cells in same set if they are “connected”
 - Initially every cell is in its own subset
- If removing an edge would connect two different subsets:
 - then remove the edge and union the subsets
 - else leave the edge because removing it makes a cycle

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Spring 2014 CSE373: Data Structures & Algorithms 21
The algorithm

- \(P = \text{disjoint sets} \) of connected cells
 - initially each cell in its own 1-element set
- \(E = \text{set} \) of edges not yet processed, initially all (internal) edges
- \(M = \text{set} \) of edges kept in maze (initially empty)

while \(P \) has more than one set {
 - Pick a random edge \((x, y)\) to remove from \(E \)
 - \(u = \text{find}(x) \)
 - \(v = \text{find}(y) \)
 - if \(u == v \)
 - add \((x, y)\) to \(M \) // same subset, do not remove edge, do not create cycle
 - else
 - \(\text{union}(u, v) \) // connect subsets, do not put edge in \(M \)
}
Add remaining members of \(E \) to \(M \), then output \(M \) as the maze
Example

Pick edge (8,14)

Start

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

P

\{1,2,7,8,9,13,19\}
\{3\}
\{4\}
\{5\}
\{6\}
\{10\}
\{11,17\}
\{12\}
\{14,20,26,27\}
\{15,16,21\}
\{18\}
\{25\}
\{28\}
\{31\}
\{22,23,24,29,30,32\}
\{33,34,35,36\}
Example

Find(8) = 7
Find(14) = 20

Union(7, 20)
Example: Add edge to M step

Pick edge (19,20)
Find (19) = 7
Find (20) = 7
Add (19,20) to M

Pick edge (19,20)
Find (19) = 7
Find (20) = 7
Add (19,20) to M
At the end

- Stop when P has one set (i.e. all cells connected)
- Suppose green edges are already in M and black edges were not yet picked
 - Add all black edges to M

Start 1 2 3 4 5 6

7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

End

\[P \{1,2,3,4,5,6,7,\ldots 36\} \]

Done! 😊
A data structure for the union-find ADT

• Start with an initial partition of n subsets
 – Often 1-element sets, e.g., \{1\}, \{2\}, \{3\}, ..., \{n\}

• May have any number of find operations
• May have up to $n-1$ union operations in any order
 – After $n-1$ union operations, every find returns same 1 set
Teaser: the up-tree data structure

- Tree structure with:
 - No limit on branching factor
 - References from children to parent

- Start with forest of 1-node trees

- Possible forest after several unions:
 - Will use roots for set names