Graphs 2: Dijkstra's Algorithm

reading: Weiss 9.3

slides created by Marty Stepp
http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.
Recall: DFS, BFS

• **depth-first search** (DFS): Explore each possible path as far as possible before backtracking.
 - Often implemented recursively.
 - DFS paths from a to all vertices (assuming ABC edge order):
 - to b: {a, b}
 - to c: {a, b, e, f, c}
 - to d: {a, d}
 - to e: {a, b, e}
 - to f: {a, b, e, f}
 - to g: {a, d, g}
 - to h: {a, d, g, h}

• **breadth-first search** (BFS): Take one step down all paths and then immediately backtrack.
 - A queue of vertices to visit.
 - Always returns shortest path (one with fewest edges):
 - to b: {a, b}
 - to c: {a, e, f, c}
 - to d: {a, d}
 - to e: {a, e}
 - to f: {a, e, f}
 - to g: {a, d, g}
 - to h: {a, d, h}
DFS/BFS and weight

• DFS and BFS do not consider edge weights.
 ▪ The minimum weight path is not necessarily the shortest path.
 ▪ Sometimes weight is more important:
 • example: plane flight costs, network transmission (latency btw servers)
 • BFS(a,f) yields [a,e,f], but [a,d,g,h,f] has lower cost (6 vs. 9)
Dijkstra's Algorithm

- **Dijkstra's algorithm**: Finds the minimum-weight path between a pair of vertices in a weighted directed graph.
 - Solves the "one vertex, shortest path" problem in weighted graphs.
 - Made by famous computer scientist Edsger Dijkstra (look him up!)

- **Basic algorithm concept**: Create a table of information about the currently known best way to reach each vertex (cost, previous vertex), and improve it until it reaches the best solution.

- **Example**: In a graph where vertices are cities and weighted edges are roads between cities, Dijkstra's algorithm can be used to find the shortest route from one city to any other.
Dijkstra pseudocode

function **dijkstra**(*v*₁, *v*₂):
 for each vertex *v*:
 // Initialize vertex info
 v’s cost := infinity.
 v’s previous := none.
 *v*₁'s cost := 0.
 pq := {all vertices, ordered by distance}.
 while *pq* is not empty:
 v := remove vertex from *pq* with minimum cost.
 mark *v* as visited.
 for each unvisited neighbor *n* of *v*:
 \[cost := *v*’s cost + weight of edge (*v*, *n*).\]
 if *cost* < *n*’s cost:
 n’s cost := *cost*.
 n’s previous := *v*.
 reconstruct path from *v*₂ back to *v*₁, following previous pointers.
Dijkstra example

- \texttt{dijkstra(A, F)};

function \texttt{dijkstra}(v_1, v_2):
 for each vertex \(v \):
 \hspace{1em}\text{// Initialize vertex info}
 \hspace{1em}v's cost := infinity.
 \hspace{1em}v's previous := none.
 \hspace{1em}v_1's cost := 0.
 \hspace{1em}pqueue := \{all vertices, by distance\}.

while \(\text{pqueue} \) is not empty:
 \(v := \text{pqueue}.\text{removeMin()} \).
 mark \(v \) as visited.
 for each unvisited neighbor \(n \) of \(v \):
 \hspace{1em}cost := \(v \)'s cost + edge(\(v, n \))'s weight.
 \hspace{1em}if \(\text{cost} < \text{n's cost} \):
 \hspace{1em}n's cost := \text{cost}.
 \hspace{1em}n's previous := \(v \).

reconstruct path from \(v_2 \) back to \(v_1 \), following previous pointers.

\(v_1 \)'s distance := 0.
all other distances := \(\infty \).

\(pqueue = [A:0, B:\infty, C:\infty, D:\infty, E:\infty, F:\infty, G:\infty] \)
Dijkstra example

- `dijkstra(A, F);`

function `dijkstra(v_1, v_2);`:
 for each vertex `v`: // Initialize vertex info
 `v`'s cost := infinity.
 `v`'s previous := none.
 `v_1`'s cost := 0.
 `pqueue` := {all vertices, by distance}.

while `pqueue` is not empty:
 `v` := `pqueue`.removeMin(). // A
 mark `v` as visited.
 for each unvisited neighbor `n` of `v`: // B, D
 `cost` := `v`'s cost + edge(`v`, `n`)’s weight.
 if `cost` < `n`'s cost:
 // B's cost = 0 + 2
 `n`'s cost := `cost`. // D's cost = 0 + 1
 `n`'s previous := `v`.

reconstruct path from `v_2` back to `v_1`, following previous pointers.

`pqueue` = [D:1, B:2, C:∞, E:∞, F:∞, G:∞]
Dijkstra example

• dijkstra(A, F);

function dijkstra(v₁, v₂):
 for each vertex v:
 // Initialize vertex info
 v's cost := infinity.
 v's previous := none.
 v₁'s cost := 0.
 pqueue := {all vertices, by distance}.

 while pqueue is not empty:
 v := pqueue.removeMin(). // D
 mark v as visited.
 for each unvisited neighbor n of v: // C, E, F, G
 cost := v's cost + edge(v, n)'s weight.
 // C's cost = 1 + 2
 if cost < n's cost:
 // E's cost = 1 + 2
 n's cost := cost.
 // F's cost = 1 + 8
 n's previous := v.
 // G's cost = 1 + 4

 reconstruct path from v₂ back to v₁, following previous pointers.

pqueue = [B:2, C:3, E:3, G:5, F:9]
Dijkstra example

• dijkstra(A, F);

function dijkstra(v₁, v₂):
 for each vertex v: // Initialize vertex info
 v's cost := infinity.
 v's previous := none.
 v₁'s cost := 0.
 pqueue := {all vertices, by distance}.
 while pqueue is not empty:
 v := pqueue.removeMin(). // B
 mark v as visited.
 for each unvisited neighbor n of v: // E
 cost := v's cost + edge(v, n)'s weight. // 2 + 10
 if cost < n's cost: // 12 > 3; false
 n's cost := cost. // no costs change.
 n's previous := v.
 reconstruct path from v₂ back to v₁, following previous pointers.

pqueue = [C:3, E:3, G:5, F:9]
Dijkstra example

• dijkstra(A, F);

function dijkstra(v₁, v₂):
 for each vertex v: // Initialize vertex info
 v's cost := infinity.
 v's previous := none.
 v₁'s cost := 0.
 pqueue := {all vertices, by distance}.

while pqueue is not empty:
 v := pqueue.removeMin(). // C
 mark v as visited.
 for each unvisited neighbor n of v: // F
 cost := v's cost + edge(v, n)'s weight. // 3 + 5
 if cost < n's cost: // 8 < 9
 n's cost := cost. // F's cost = 8
 n's previous := v.
 reconstruct path from v₂ back to v₁,
 following previous pointers.
Dijkstra example

• \texttt{dijkstra(A, F)};

function \texttt{dijkstra}(v_1, v_2):
 for each vertex v: // Initialize vertex info
 \texttt{v}'s cost := infinity.
 \texttt{v}'s previous := none.
 \texttt{v}_1's cost := 0.
 \texttt{pqueue} := \{all vertices, by distance\}.

 while \texttt{pqueue} is not empty:
 \texttt{v} := \texttt{pqueue}.removeMin(). // E
 mark \texttt{v} as visited.
 for each unvisited neighbor \texttt{n} of \texttt{v}: // G
 \texttt{cost} := \texttt{v}'s cost + edge(\texttt{v}, \texttt{n})'s weight. // 3 + 6
 if \texttt{cost} < \texttt{n}'s cost: // 9 > 5; false
 \texttt{n}'s cost := \texttt{cost}. // no costs change.
 \texttt{n}'s previous := \texttt{v}.

reconstruct path from \texttt{v}_2 back to \texttt{v}_1,
following previous pointers.

\texttt{pqueue} = [G:5, F:8]
Dijkstra example

- `dijkstra(A, F);`

Function `dijkstra(v₁, v₂):`

- For each vertex `v`: // Initialize vertex info
 - `v`'s cost := infinity.
 - `v`'s previous := none.
 - `v₁`'s cost := 0.

- `pqueue := {all vertices, by distance}.`

- While `pqueue` is not empty:
 - `v := pqueue.removeMin().` // G
 - Mark `v` as visited.
 - For each unvisited neighbor `n` of `v`: // F
 - `cost := v`'s cost + edge(`v, n`)'s weight. // 5 + 1
 - If `cost < n`'s cost: // 6 < 8
 - `n`'s previous := `v`.

- Reconstruct path from `v₂` back to `v₁`, following previous pointers.

```
pqueue = [F:6]
```
Dijkstra example

• dijkstra(A, F);

function dijkstra(v₁, v₂):
 for each vertex v: // Initialize vertex info
 v's cost := infinity.
 v's previous := none.
 v₁'s cost := 0.
 pqueue := {all vertices, by distance}.

 while pqueue is not empty:
 v := pqueue.removeMin(). // F
 mark v as visited.
 for each unvisited neighbor n of v: // none
 cost := v's cost + edge(v, n)'s weight.

 if cost < n's cost: // no costs change.
 n's cost := cost.
 n's previous := v.

 reconstruct path from v₂ back to v₁, following previous pointers.

pqueue = []
function \texttt{dijkstra}(v_1, v_2):
 for each vertex v: // Initialize vertex info
 v's cost := infinity.
 v's previous := none.
 v_1's cost := 0.
 \texttt{pqueue} := \{all vertices, by distance\}.

 while \texttt{pqueue} is not empty:
 v := \texttt{pqueue}.\texttt{removeMin}().
 mark v as visited.
 for each unvisited neighbor n of v:
 cost := v's cost + edge(v, n)'s weight.
 if cost < n's cost:
 n's cost := cost.
 n's previous := v.

 reconstruct path from v_2 back to v_1, following previous pointers. // path = \{A, D, G, F\}
Algorithm properties

• Dijkstra's algorithm is a greedy algorithm:
 ▪ Make choices that currently seem the best.
 ▪ Locally optimal does not always mean globally optimal.

• It is correct because it maintains the following two properties:
 ▪ 1) for every marked vertex, the current recorded cost is the lowest cost to that vertex from the source vertex.
 ▪ 2) for every unmarked vertex v, its recorded distance is shortest path distance to v from source vertex, considering only currently known vertices and v.
Dijkstra's runtime

- For sparse graphs, (i.e. graphs with much less than $|V|^2$ edges) Dijkstra's is implemented most efficiently with a priority queue.

 - initialization: $O(|V|)$
 - while loop: $O(|V|)$ times
 - remove min-cost vertex from pq: $O(\log |V|)$
 - potentially perform $|E|$ updates on cost/previous
 - update costs in pq: $O(\log |V|)$
 - reconstruct path: $O(|E|)$

 - Total runtime: $O(|V| \log |V| + |E| \log |V|)$
 - $= O(|E| \log |V|)$, because $|V| = O(|E|)$ if graph is connected

 - if a list is used instead of a pq: $O(|V^2| + |E|) = O(|V|^2)$
Dijkstra exercise

• Use Dijkstra's algorithm to determine the lowest cost path from vertex A to all of the other vertices in the graph.
 - Keep track of previous vertices so that you can reconstruct the path.