CSE 373

Graphs 1: Concepts, Depth/Breadth-First Search
reading: Weiss Ch. 9

slides created by Marty Stepp
http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.
What is a graph?
Graphs

• **graph**: A data structure containing:
 - a set of **vertices** V,
 (sometimes called nodes)
 - a set of **edges** E, where an edge represents a connection between 2 vertices.
 - Graph $G = (V, E)$
 - an edge is a pair (v, w) where v, w are in V

• the graph at right:
 - $V = \{a, b, c, d\}$
 - $E = \{(a, c), (b, c), (b, d), (c, d)\}$

• **degree**: number of edges touching a given vertex.
 - at right: $a=1$, $b=2$, $c=3$, $d=2$
Graph examples

- For each, what are the vertices and what are the edges?
 - Web pages with links
 - Methods in a program that call each other
 - Road maps (e.g., Google maps)
 - Airline routes
 - Facebook friends
 - Course pre-requisites
 - Family trees
 - Paths through a maze
Paths

• **path**: A path from vertex *a* to *b* is a sequence of edges that can be followed starting from *a* to reach *b*.
 - can be represented as vertices visited, or edges taken
 - example, one path from V to Z: \{b, h\} or \{V, X, Z\}
 - What are two paths from U to Y?

• **path length**: Number of vertices or edges contained in the path.

• **neighbor** or **adjacent**: Two vertices connected directly by an edge.
 - example: V and X
• **reachable**: Vertex a is *reachable* from b if a path exists from a to b.

• **connected**: A graph is *connected* if every vertex is reachable from any other.
 - Is the graph at top right connected?

• **strongly connected**: When every vertex has an edge to every other vertex.
Loops and cycles

- **cycle**: A path that begins and ends at the same node.
 - example: \{b, g, f, c, a\} or \{V, X, Y, W, U, V\}.
 - example: \{c, d, a\} or \{U, W, V, U\}.
 - **acyclic graph**: One that does not contain any cycles.

- **loop**: An edge directly from a node to itself.
 - Many graphs don't allow loops.
Weighted graphs

- **weight**: Cost associated with a given edge.
 - Some graphs have weighted edges, and some are unweighted.
 - Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0, or all 1, etc.)
 - Most graphs do not allow negative weights.

- **example**: graph of airline flights, weighted by miles between cities:
Directed graphs

- **directed graph** ("digraph"): One where edges are *one-way* connections between vertices.
 - If graph is directed, a vertex has a separate in/out degree.
 - A digraph can be weighted or unweighted.
 - Is the graph below connected? Why or why not?
Digraph example

- Vertices = UW CSE courses (incomplete list)
- Edge \((a, b)\) = \(a\) is a prerequisite for \(b\)
A binary tree is a graph with some restrictions:
- The tree is an unweighted, directed, acyclic graph (DAG).
- Each node's in-degree is at most 1, and out-degree is at most 2.
- There is exactly one path from the root to every node.

A linked list is also a graph:
- Unweighted DAG.
- In/out degree of at most 1 for all nodes.
Searching for paths

• Searching for a path from one vertex to another:
 ▪ Sometimes, we just want *any* path (or want to know there *is* a path).
 ▪ Sometimes, we want to minimize path *length* (# of edges).
 ▪ Sometimes, we want to minimize path *cost* (sum of edge weights).

• What is the shortest path from MIA to SFO? Which path has the minimum cost?
Depth-first search

- **depth-first search** (DFS): Finds a path between two vertices by exploring each possible path as far as possible before backtracking.
 - Often implemented recursively.
 - Many graph algorithms involve *visiting* or *marking* vertices.

- Depth-first paths from a to all vertices (assuming ABC edge order):
 - to b: \{a, b\}
 - to c: \{a, b, e, f, c\}
 - to d: \{a, d\}
 - to e: \{a, b, e\}
 - to f: \{a, b, e, f\}
 - to g: \{a, d, g\}
 - to h: \{a, d, g, h\}
function `dfs(v_1, v_2)`:
 `dfs(v_1, v_2, { })`.

function `dfs(v_1, v_2, path)`:
 `path += v_1`.
 mark `v_1` as visited.
 if `v_1` is `v_2`:
 a path is found!

 for each unvisited neighbor `n` of `v_1`:
 if `dfs(n, v_2, path)` finds a path: a path is found!

 `path -= v_1`. // path is not found.

• The `path` param above is used if you want to have the path available as a list once you are done.
 ▪ Trace `dfs(a, f)` in the above graph.
DFS observations

- **discovery**: DFS is guaranteed to find a path if one exists.

- **retrieval**: It is easy to retrieve exactly what the path is (the sequence of edges taken) if we find it.

- **optimality**: not optimal. DFS is guaranteed to find a path, not necessarily the best/shortest path.
 - Example: dfs(a, f) returns {a, d, c, f} rather than {a, d, f}.

![Graph diagram](image-url)
Breadth-first search

- **breadth-first search** (BFS): Finds a path between two nodes by taking one step down all paths and then immediately backtracking.
 - Often implemented by maintaining a queue of vertices to visit.

- BFS always returns the shortest path (the one with the fewest edges) between the start and the end vertices.
 - to b: \{a, b\}
 - to c: \{a, e, f, c\}
 - to d: \{a, d\}
 - to e: \{a, e\}
 - to f: \{a, e, f\}
 - to g: \{a, d, g\}
 - to h: \{a, d, h\}
BFS pseudocode

function `bfs(v_1, v_2)`:

queue := \{v_1\}.
mark \(v_1\) as visited.

while queue is not empty:
 \(v := queue\).removeFirst() .
 if \(v\) is \(v_2\):
 a path is found!

 for each unvisited neighbor \(n\) of \(v\):
 mark \(n\) as visited.
 queue.addLast(\(n\)).

 // path is not found.

• Trace `bfs(a, f)` in the above graph.
BFS observations

- **optimality:**
 - always finds the shortest path (fewest edges).
 - in unweighted graphs, finds optimal cost path.
 - In weighted graphs, *not* always optimal cost.

- **retrieval:** harder to reconstruct the actual sequence of vertices or edges in the path once you find it
 - conceptually, BFS is exploring many possible paths in parallel, so it's not easy to store a path array/list in progress
 - solution: We can keep track of the path by storing predecessors for each vertex (each vertex can store a reference to a *previous* vertex).

- DFS uses less memory than BFS, easier to reconstruct the path once found; but DFS does not always find shortest path. BFS does.
DFS, BFS runtime

• What is the expected runtime of DFS and BFS, in terms of the number of vertices \(V \) and the number of edges \(E \) ?

• Answer: \(O(|V| + |E|) \)

 ▪ where \(|V| \) = number of vertices, \(|E| \) = number of edges

 ▪ Must potentially visit every node and/or examine every edge once.

 ▪ why not \(O(|V| \times |E|) \) ?

• What is the space complexity of each algorithm?

 ▪ (How much memory does each algorithm require?)
BFS that finds path

function \texttt{bfs}(v_1, v_2):
 \begin{align*}
 &\text{queue} := \{v_1\}. \\
 &\text{mark } v_1 \text{ as visited.}
 \\
 &\text{while queue is not empty:}
 \begin{align*}
 &\quad v := \text{queue.removeFirst().} \\
 &\quad \text{if } v \text{ is } v_2: \\
 &\quad\quad \text{a path is found! (reconstruct it by following .prev back to } v_1.)
 \end{align*}
 \end{align*}
 \\
 &\text{for each unvisited neighbor } n \text{ of } v:
 \begin{align*}
 &\quad \text{mark } n \text{ as visited. (set } n.\text{prev} = v.)
 \\
 &\quad \text{queue.addLast}(n).
 \end{align*}
 \\
 &// \text{path is not found.}

- By storing some kind of "previous" reference associated with each vertex, you can reconstruct your path back once you find \(v_2 \).