CSE 373

Priority queue implementation; Intro to heaps
read: Weiss Ch. 6

slides created by Marty Stepp
http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.
Prioritization problems

- print jobs: CSE lab printers constantly accept and complete jobs from all over the building. We want to print faculty jobs before staff before student jobs, and grad students before undergrad, etc.

- ER scheduling: Scheduling patients for treatment in the ER. A gunshot victim should be treated sooner than a guy with a cold, regardless of arrival time. How do we always choose the most urgent case when new patients continue to arrive?

- key operations we want:
 - \textit{add} an element (print job, patient, etc.)
 - \textit{get/remove} the most "important" or "urgent" element
Priority Queue ADT

- **priority queue**: A collection of ordered elements that provides fast access to the minimum (or maximum) element.
 - `add`: adds in order
 - `peek`: returns **minimum** or "highest priority" value
 - `remove`: removes/returns **minimum** value
 - `isEmpty`, `clear`, `size`, `iterator` \(O(1)\)

```java
pq.add("if");
pq.add("from");
... 
pq.remove();
```

- priority queue: "by"
 - "if" "the" "of"
 - "down" "from"
 - "by" "she" "you"
 - "in" "why" "him"
Unfilled array?

• Consider using an unfilled array to implement a priority queue.
 • add: Store it in the next available index, as in a list.
 • peek: Loop over elements to find minimum element.
 • remove: Loop over elements to find min. Shift to remove.

```java
queue.add(9);
queue.add(23);
queue.add(8);
queue.add(-3);
queue.add(49);
queue.add(12);
queue.remove();
```

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>9</td>
<td>23</td>
<td>8</td>
<td>-3</td>
<td>49</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>size</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• How efficient is add? peek? remove?
 • O(1), O(N), O(N)
 • (peek must loop over the array; remove must shift elements)
Sorted array?

- Consider using a sorted array to implement a priority queue.
 - **add:** Store it in the proper index to maintain sorted order.
 - **peek:** Minimum element is in index [0].
 - **remove:** Shift elements to remove min from index [0].

```java
queue.add(9);
queue.add(23);
queue.add(8);
queue.add(-3);
queue.add(49);
queue.add(12);
queue.remove();
```

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-3</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>23</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

- **How efficient is** add? peek? remove?
 - $O(N)$, $O(1)$, $O(N)$
 - *(add and remove must shift elements)*
Linked list?

- Consider using a doubly linked list to implement a priority queue.
 - **add:** Store it at the end of the linked list.
 - **peek:** Loop over elements to find minimum element.
 - **remove:** Loop over elements to find min. Unlink to remove.

```java
queue.add(9);
queue.add(23);
queue.add(8);
queue.add(-3);
queue.add(49);
queue.add(12);
queue.remove();
```

- **How efficient is add? peek? remove?**
 - $O(1)$, $O(N)$, $O(N)$
 - *(peek and remove must loop over the linked list)*
Sorted linked list?

- Consider using a *sorted* linked list to implement a priority queue.
 - **add**: Store it in the proper place to maintain sorted order.
 - **peek**: Minimum element is at the front.
 - **remove**: Unlink front element to remove.

```java
queue.add(9);
queue.add(23);
queue.add(8);
queue.add(-3);
queue.add(49);
queue.add(12);
queue.remove();
```

- How efficient is **add**? **peek**? **remove**?
 - **$O(N)$, $O(1)$, $O(1)$**
 - *(add must loop over the linked list to find the proper insertion point)*
Binary search tree?

• Consider using a binary search tree to implement a PQ.
 ▪ add: Store it in the proper BST L/R - ordered spot.
 ▪ peek: Minimum element is at the far left edge of the tree.
 ▪ remove: Unlink far left element to remove.

```java
queue.add(9);
queue.add(23);
queue.add(8);
queue.add(-3);
queue.add(49);
queue.add(12);
queue.remove();
```

• How efficient is add? peek? remove?
 • $O(\log N)$, $O(\log N)$, $O(\log N)$...?
 • (good in theory, but the tree tends to become unbalanced to the right)
Unbalanced binary tree

```java
queue.add(9);
queue.add(23);
queue.add(8);
queue.add(-3);
queue.add(49);
queue.add(12);
queue.remove();
queue.add(16);
queue.add(34); queue.remove(); queue.remove(); queue.add(42); queue.add(45); queue.remove();
```

- Simulate these operations. What is the tree's shape?
- A tree that is *unbalanced* has a height close to N rather than $\log N$, which breaks the expected runtime of many operations.
Heaps

- **heap**: A *complete* binary tree with *vertical* ordering.
 - **complete tree**: Every level is full except possibly the lowest level, which must be filled from left to right
 - (i.e., a node may not have any children until all possible siblings exist)
Heap ordering

- **heap ordering**: If $P \leq X$ for every element X with parent P.
 - Parents' values are always smaller than those of their children.
 - Implies that minimum element is always the root (a "min-heap").
 - variation: "max-heap" stores largest element at root, reverses ordering
 - Is a heap a BST? How are they related?
Which are min-heaps?
Which are max-heaps?

- No
- No
- No
- No
Heap height and runtime

• The height of a complete tree is always $\log N$.
 ▪ How do we know this for sure?

• Because of this, if we implement a priority queue using a heap, we can provide the following runtime guarantees:
 ▪ add: $O(\log N)$
 ▪ peek: $O(1)$
 ▪ remove: $O(\log N)$

n-node complete tree of height h:

$2^h \leq n \leq 2^{h+1} - 1$

$h = \lceil \log n \rceil$
The add operation

- When an element is added to a heap, where should it go?
 - Must insert a new node while maintaining heap properties.
 - `queue.add(15);`
The add operation

- When an element is added to a heap, it should be initially placed as the *rightmost leaf* (to maintain the completeness property).
 - But the heap ordering property becomes broken!

```
10
 / \
20 80
   / \
 40 60
   / \
50 700 65

10
 / \
20 80
   / \
 40 60
   / \
50 700 65
```
"Bubbling up" a node

- **bubble up**: To restore heap ordering, the newly added element is shifted ("bubbled") up the tree until it reaches its proper place.
 - Weiss: "percolate up" by swapping with its parent
 - How many bubble-ups are necessary, at most?
Bubble-up exercise

- Draw the tree state of a min-heap after adding these elements:
 - 6, 50, 11, 25, 42, 20, 104, 76, 19, 55, 88, 2
The peek operation

- A peek on a min-heap is trivial to perform.
 - because of heap properties, minimum element is always the root
 - $O(1)$ runtime
- Peek on a max-heap would be $O(1)$ as well (return max, not min)
The remove operation

- When an element is removed from a heap, what should we do?
 - The root is the node to remove. How do we alter the tree?
 - `queue.remove();`
The remove operation

- When the root is removed from a heap, it should be initially replaced by the rightmost leaf (to maintain completeness).
 - But the heap ordering property becomes broken!
"Bubbling down" a node

- **bubble down**: To restore heap ordering, the new improper root is shifted ("bubbled") down the tree until it reaches its proper place.
 - Weiss: "percolate down" by swapping with its smaller child (why?)
 - How many bubble-downs are necessary, at most?
Bubble-down exercise

- Suppose we have the min-heap shown below.
- Show the state of the heap tree after remove has been called 3 times, and which elements are returned by the removal.