Today’s Outline

• Announcements:

• Today’s Topics:

 › Sorting (Weiss, Chapter 7)
 › Sections 7.1-7.3 and 7.5
 › Section 7.6, Mergesort
 › Section 7.7, Quicksort

Sorting

CSE 373
Data Structures & Algorithms
Linda Shapiro
Spring 2013

Today’s Outline

• Announcements:

• Today’s Topics:

 › Sorting (Weiss, Chapter 7)
 › Sections 7.1-7.3 and 7.5
 › Section 7.6, Mergesort
 › Section 7.7, Quicksort

Sorting

• Input

 › an array A of data records (Note: we have seen how to sort when elements are in linked lists: Mergesort)
 › a key value in each data record
 › a comparison function which imposes a consistent ordering on the keys (e.g., integers)

• Output

 › reorganize the elements of A such that

 • For any i and j, if i < j then A[i] ≤ A[j]

Space

• How much space does the sorting algorithm require in order to sort the collection of items?

 › Is copying needed? O(n) additional space
 › In-place sorting – no copying – O(1) additional space
 › Somewhere in between for “temporary”, e.g. O(log n) space
 › External memory sorting – data so large that does not fit in memory

Time

• How fast is the algorithm?

 › The definition of a sorted array A says that for any i<j, A[i] < A[j]
 › This means that you need to at least check on each element at the very minimum, i.e., at least O(N)
 › And you could end up checking each element against every other element, which is O(N^2)
 › The big question is: How close to O(N) can you get?

Stability

• Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?

 › E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 › Extremely important property for databases
 › A stable sorting algorithm is one which does not rearrange the order of duplicate keys
Faster is better!

Bubble Sort

- “Bubble” elements to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i] > A[i+1]
 - Bubble every element towards its correct position
 - last position has the largest element
 - then bubble every element except the last one towards its correct position
 - then repeat until done or until the end of the quarter, whichever comes first ...
Insertion Sort

• What if first *k* elements of array are already sorted?
 ➔ 4, 7, 12, 5, 19, 16
• We can shift the tail of the sorted elements list down and then *insert* next element into proper position and we get *k*+1 sorted elements
 ➔ 4, 5, 7, 12, 19, 16

```
InsertionSort(A[1..N]: integer array, N: integer) {
  i, j, temp: integer;
  for i = 2 to N {
    temp := A[i];
    j := i;
    while j > 1 and A[j-1] > temp {
    }
    A[j] = temp;
  }
}
```

• Is Insertion sort in place?
• Running time = ?

Example

```
1 2 3 7 8 9 10 12 15 14 18 23 16
```

Insertion Sort Characteristics

• In place and Stable
• Running time
 ➔ Worst case is **O(N²)**
 • reverse order input
 • must copy every element every time
• Good sorting algorithm for almost sorted data
 ➔ Each item is close to where it belongs in sorted order.

Heap Sort

• We use a Max-Heap
• Root node = A[1]
• Keep track of current size *N* (number of nodes)

```
value
7 5 6 2 4
index
1 2 3 4 5 6 7 8
```

N = 5
Using Binary Heaps for Sorting

- Build a **max-heap**
- Do **N** **DeleteMax** operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?

Revised Sort Order

- Every time we do a **DeleteMax**, the heap gets smaller by one node, and we have one more node to store
 - Store the data at the end of the heap array
 - Not "in the heap" but it is in the heap array

Repeated DeleteMax

- After all the **DeleteMax**s, the heap is gone but the array is full and is in sorted order

Heap Sort is In-place

- Running time
 - time to **build** max-heap is **O(N)**
 - time for **N DeleteMax** operations is **N O(log N)**
 - total time is **O(N log N)**
- Can also show that running time is **Ω(N log N)** for some inputs,
 - so worst case is **Θ(N log N)**
 - Average case running time is also **O(N log N)**
- Heapsort is **in-place** but **not stable** (why?)

"Divide and Conquer"

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- **Idea 1**: Divide array into two halves, **recursively** sort left and right halves, then **merge** two halves → **Mergesort**
- **Idea 2**: Partition array into items that are "small" and items that are "large", then recursively sort the two sets → **Quicksort**
Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Mergesort Example

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary Array

- The merging requires an auxiliary array.

Merging
Merging

```
Merging Algorithm

Mergesort(A[], T[]): integer array, left, right : integer : {
    mid := (left + right)/2;
    i := left; j := mid + 1; target := left;
    while i <= mid and j <= right do
        else T[target] := A[j]; j := j + 1;
        target := target + 1;
    if i > mid then //left completed//
        for k := left to target-1 do A[k] := T[k];
    if j > right then //right completed//
        k := mid; l := right;
        while k > i do A[k] := A[i]; k := k-1;
        for k := left to target-1 do A[k] := T[k];
}
```

Recursive Mergesort

```
Mergesort(A[], T[]): integer array, left, right : integer : {
    if left < right then
        mid := (left + right)/2;
        Mergesort(A,T,left,mid);
        Mergesort(A,T,mid+1,right);
}
```

Iterative Mergesort

```
Iterative Mergesort(A[1..n]: integer array, n : integer) : {
    i, m, parity : integer;
    T[1..n]: integer array;
    m := 2;
    parity := 0;
    while m < n do
        for i = 1 to n - m + 1 by m do
            if parity = 0 then Merge(A,T,i,i+m-1);
            else Merge(T,A,i,i+m-1);
            parity := 1 – parity;
        m := 2*m;
    if parity = 1 then
        for i = 1 to n do A[i] := T[i];
}
```

Need of a last copy.

Iterative Mergesort

```
IterativeMergesort(A[1..n]: integer array, n : integer) : {
    //precondition: n is a power of 2/\n    i, m, parity : integer;
    T[1..n]: integer array;
    m := 2; parity := 0;
    while m < n do
        for l = 1 to n - m + 1 by m do
            if parity = 0 then Merge(A,T,i,i+m-1);
            else Merge(T,A,i,i+m-1);
            parity := 1 – parity;
        m := 2*m;
        if parity = 1 then
            for l = 1 to n do A[i] := T[i];
}
```

How do you handle non-powers of 2?
How can the final copy be avoided?
Mergesort Analysis

• Let T(N) be the running time for an array of N elements
• Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
• Each recursive call takes T(N/2) and merging takes O(N)

Mergesort Recurrence

• The recurrence relation for T(N) is:
 › T(1) ≤ a
 • base case: 1 element array → constant time
 › T(N) ≤ 2T(N/2) + bN
 • Sorting N elements takes
 – the time to sort the left half
 – plus the time to sort the right half
 – plus an O(N) time to merge the two halves
 • T(N) = O(n log n)

Properties of Mergesort

• Not in-place
 › Requires an auxiliary array (O(n) extra space)
• Stable
 › Make sure that left is sent to target on equal values.
• Iterative Mergesort reduces copying.

Quicksort

• Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 › Partition array into left and right sub-arrays
 • Choose an element of the array, called pivot
 • the elements in left sub-array are all less than pivot
 • elements in right sub-array are all greater than pivot
 › Recursively sort left and right sub-arrays
 › Concatenate left and right sub-arrays in O(1) time

“Four easy steps”

• To sort an array S
 1. If the number of elements in S is 0 or 1, then return. The array is sorted.
 2. Pick an element v in S. This is the pivot value.
 3. Partition S-{v} into two disjoint subsets, S_1 = {all values x<v}, and S_2 = {all values x>v}.
 4. Return QuickSort(S_1), v, QuickSort(S_2)
Details, details

- Implementing the actual partitioning
- Picking the pivot
 › want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot

Quicksort Partitioning

- Need to partition the array into left and right sub-arrays
 › the elements in left sub-array are \leq pivot
 › elements in right sub-array are \geq pivot
- How do the elements get to the correct partition?
 › Choose an element from the array as the pivot
 › Make one pass through the rest of the array and swap as needed to put elements in partitions

Partitioning: Choosing the pivot

- One implementation (there are others)
 › median3 finds pivot and sorts left, center, right
 • Median3 takes the median of leftmost, middle, and rightmost elements
 • An alternative is to choose the pivot randomly (need a random number generator; "expensive")
 • Another alternative is to choose the first element (but can be very bad. Why?)
 › Swap pivot with next to last element

Partitioning in-place

- Set pointers i and j to start and end of array
- Increment i until you hit element $A[i] >$ pivot
- Decrement j until you hit elmt $A[j] <$ pivot
- Swap $A[i]$ and $A[j]$
- Repeat until i and j cross
- Swap pivot (at $A[N-2]$) with $A[i]$

Example

Choose the pivot as the median of three

```
6 4 0 9 3 5 2 1 8
```
Median of 0, 6, 8 is 6. Pivot is 6

```
2 4 0 9 3 5 1 8 6
```
Place the largest at the right and the smallest at the left. Swap pivot with next to last element.

Example

Move i to the right up to $A[i]$ larger than pivot.
Move j to the left up to $A[j]$ smaller than pivot.
Swap

```
1 4 6 7 2 5 1 8 3
```
```
1 2 6 7 4 5 1 8 3
```
```
1 2 3 5 4 1 8 6 7
```
```
1 2 3 5 4 6 1 8 7
```
Example

Cross-over >

S1 < pivot

S2 > pivot

Recursive Quicksort

Quicksort(A[]): integer array, left, right : integer): {
 pivotindex : integer;
 if left + CUTOFF < right then
 pivot := median3(A[left,right]);
 pivotindex := Partition(A,left,right-1,pivot);
 Quicksort(A, left, pivotindex – 1);
 Quicksort(A, pivotindex + 1, right);
 else
 Insertionsort(A,left,right);
}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Quick sort Best Case Performance

• Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
 › \(T(0) = T(1) = O(1) \)
 ‹ constant time if 0 or 1 element
 › For \(N > 1 \), 2 recursive calls plus linear time for partitioning
 › \(T(N) = 2T(N/2) + O(N) \)
 ‹ Same recurrence relation as Mergesort
 › \(T(N) = O(N \log N) \)

Properties of Quicksort

• Not stable because of long distance swapping.
• No iterative version (without using a stack).
• Pure quicksort not good for small arrays.
• “In-place”, but uses auxiliary storage because of recursive call \(O(\log n) \) space.
• \(O(n \log n) \) average case performance, but \(O(n^2) \) worst case performance.

Quick sort Worst Case Performance

• Algorithm always chooses the worst pivot — one sub-array is empty at each recursion
 › \(T(N) \leq a \) for \(N \leq C \)
 › \(T(N) \leq T(N-1) + bn \)
 › \(\leq T(N-2) + b(N-1) + bn \)
 › \(\leq T(C) + b(C+1) + \ldots + bn \)
 › \(\leq a + b(C + (C+1) + (C+2) + \ldots + N) \)
 › \(T(N) = O(N^2) \)
• Fortunately, average case performance is \(O(N \log N) \) (see text for proof)

Folklore

• “Quicksort is the best in-memory sorting algorithm.”
• Truth
 › Quicksort uses very few comparisons on average.
 › Quicksort does have good performance in the memory hierarchy.
 ‹ Small footprint
 ‹ Good locality