Minimum Spanning Trees

CSE 373
Data Structures & Algorithms
Linda Shapiro
Spring 2013

Today’s Outline

- Announcements:
 - HW 5 due Friday, May 31.

- Today’s Topics:
 - Weiss 9.5, 9.6

Today’s Outline

- Announcements:
 - HW 5 due Friday, May 31.

- Today’s Topics:
 - Weiss 9.5, 9.6

Recall Spanning Tree

- Given (connected) graph G(V,E), a spanning tree T(V',E'):
 - Spans the graph (V' = V)
 - Forms a tree (no cycle);
 - E' has |V| - 1 edges

Minimum Spanning Tree

- Edges are weighted: find minimum cost spanning tree

- Applications
 - Find cheapest way to wire your house
 - Find minimum cost to send a message on the Internet

Strategy

- Strategy for construction:
 - Add an edge of minimum cost that does not create a cycle (greedy algorithm)
 - Repeat |V| - 1 times
 - Correct since if we could replace an edge with one of lower cost, the algorithm would have picked it up

Two Algorithms

- Prim: (build tree incrementally)
 - Pick lower cost edge connected to known (incomplete) spanning tree that does not create a cycle and expand to include it in the tree
- Kruskal: (build forest that will finish as a tree)
 - Pick lower cost edge not yet in a tree that does not create a cycle and expand to include it somewhere in the forest
Prim's algorithm

Starting from empty T, choose a vertex at random and initialize $V = \{1\}$, $E = \emptyset$

Choose the vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)

Repeat until all vertices have been chosen

Choose one node, say v and set $cost[v] = 0$ and $prev[v] = 0$

While there are unmarked nodes

Select the unmarked node u with minimum cost; mark it

For each unmarked node w adjacent to u

if $cost(u, w) < cost(w)$ then $cost[w] := cost[u, w]$

$prev[w] = u$

Final Cost: $1 + 3 + 4 + 1 + 1 = 10$

Prim's Algorithm Implementation

- Assume adjacency list representation
 - Initialize connection cost of each node to "inf" and "unmark" them
 - Choose one node, say v and set $cost(v) = 0$ and $prev(v) = 0$

While there are unmarked nodes

Select the unmarked node u with minimum cost; mark it

For each unmarked node w adjacent to u

if $cost(u, w) < cost(w)$ then $cost[w] := cost[u, w]$

$prev[w] = u$

- Looks a lot like Dijkstra's algorithm!
Kruskal’s Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets

Detecting Cycles

- If the edge to be added \((u,v)\) is such that vertices \(u\) and \(v\) belong to the same tree, then by adding \((u,v)\) you would form a cycle
 - Therefore to check, \(\text{Find}(u)\) and \(\text{Find}(v)\). If they are the same discard \((u,v)\)
 - If they are different \(\text{Union}(\text{Find}(u), \text{Find}(v))\)

Properties of trees in K’s algorithm

- Vertices in different trees are disjoint
 - True at initialization and Union won’t modify the fact for remaining trees
- Trees form equivalent classes under the relation “is connected to”
 - \(u\) connected to \(u\) (reflexivity)
 - \(u\) connected to \(v\) implies \(v\) connected to \(u\) (symmetry)
 - \(u\) connected to \(v\) and \(v\) connected to \(w\) implies a path from \(u\) to \(w\) so \(u\) connected to \(w\) (transitivity)

K’s Algorithm Data Structures

- Adjacency list for the graph
 - To perform the initialization of the data structures below
- Disjoint Set ADT’s for the trees (recall Up tree implementation of Union-Find)
- Binary heap for edges

Example

```text
10 1 5
8 1 3
6 1 4
2 1 1
1
```

The accepted edges form the minimum spanning tree.
Initialization
Initially, Forest of 6 trees
F = \{(1),(2),(3),(4),(5),(6)\}
Edges in a heap (not shown)

Step 1
Select edge with lowest cost (2,5)
Find(2) = 2, Find (5) = 5
Union(2,5)
F = \{(1),(2,5),(3),(4),(6)\}
1 edge accepted

Step 2
Select edge with lowest cost (2,6)
Find(2) = 2, Find (6) = 6
Union(2,6)
F = \{(1),(2,5,6),(3),(4)\}
2 edges accepted

Step 3
Select edge with lowest cost (1,3)
Find(1) = 1, Find (3) = 3
Union(1,3)
F = \{(1,3),(2,5,6),(4)\}
3 edges accepted

Step 4
Select edge with lowest cost (5,6)
Find(5) = 2, Find (6) = 2
Do nothing
F = \{(1,3),(2,5,6),(4)\}
3 edges accepted

Step 5
Select edge with lowest cost (3,4)
Find(3) = 1, Find (4) = 4
Union(1,4)
F = \{(1,3,4),(2,5,6)\}
4 edges accepted
Step 6

Select edge with lowest cost (4, 5)
Find(4) = 1, Find (5) = 2
Union(1, 2)

F= {{1, 3, 4, 2, 5, 6}}
5 edges accepted: end
Total cost = 10
Although there is a unique spanning tree in this example, this is not generally the case

Kruskal’s Algorithm Analysis

- Initialize forest $O(n)$
- Initialize heap $O(m)$, $m = |E|$
- Loop performed m times
 - In the loop one Deletemin $O(\log m)$
 - Two Find, each $O(\log n)$
 - One Union (at most) $O(1)$
- So worst case $O(m \log m)$

Time Complexity Summary

- Recall that $m = |E| = O(V^2) = O(n^2)$
- Prim’s runs in $O((n+m) \log n)$
- Kruskal’s runs in $O(m \log m)$
- In practice, Kruskal has a tendency to run faster since graphs might not be dense and not all edges need to be looked at in the Deletemin operations