Disjoint Sets
Union-Find Algorithm

CSE 373
Data Structures & Algorithms
Linda Shapiro
Spring 2013

Today’s Outline

• Announcements
• Today’s Topics:
 › Disjoint Sets (Weiss Chapter 8, except Section 6)

Equivalence Relations

• A relation R is defined on set S if for every pair of elements $a, b \in S$, $a \mathrel{R} b$ is either true or false.
• An equivalence relation is a relation R that satisfies the 3 properties:
 › Reflexive: $a \mathrel{R} a$ for all $a \in S$
 › Symmetric: $a \mathrel{R} b$ iff $b \mathrel{R} a$; $a, b \in S$
 › Transitive: $a \mathrel{R} b$ and $b \mathrel{R} c$ implies $a \mathrel{R} c$

Equivalence Classes

• Given an equivalence relation R, decide whether a pair of elements $a, b \in S$ is such that $a \mathrel{R} b$.
• The equivalence class of an element a is the subset of S of all elements related to a.
• Equivalence classes are disjoint sets

Dynamic Equivalence Problem

• Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes
• Requires two operations:
 › Find the equivalence class (set) of a given element
 › Union of two sets
• It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!

Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
 › $\{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}$
• Each set has a unique name, one of its members
 › $\{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}$
Union

- Union(x,y) – take the union of two sets named x and y
 - \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}
 - Union(5, 1)
 - \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\}

Find

- Find(x) – return the name of the set containing x.
 - \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\}
 - Find(1) = 5
 - Find(4) = 8
 - Find(9) = ?

An Application

- Build a random maze by erasing edges.

An Application (ct’d)

- Pick Start and End

An Application (ct’d)

- Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.
A Cycle (we don’t want that)

Start

End

A Good Solution

Start

End

Good Solution : A Hidden Tree

Start

End

Number the Cells

We have disjoint sets \(S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots, \{36\} \} \) each cell is unto itself. We have all possible edges \(E = \{(1,2), (1,7), (2,8), (2,3), \ldots\} \) 60 edges total.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

789	10	11	12
13	14	15	16
17	18		

Basic Algorithm

- \(S = \) set of sets of connected cells
- \(E = \) set of edges
- \(\text{Maze} = \) set of maze edges initially empty

While there is more than one set in \(S \)

pick a random edge \((x,y)\) and remove from \(E \)

\(u := \text{Find}(x) \), \(v := \text{Find}(y) \)

if \(u \neq v \) then

\(\text{Union}(u,v) \) //knock down the wall between the cells (cells in \(\text{the same set are connected} \))

else

\(\text{add } (x,y) \text{ to Maze} \) //don’t remove because there is already a path between \(x \) and \(y \)

All remaining members of \(E \) together with Maze form the maze

Example Step

Pick \((8,14)\)

\(S = \{1,2,7,9,13,19\} \)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

789	10	11	12
13	14	15	16
17	18		

End
Find Operation

- Find(x) follow x to the root and return the root (which is the name of the class).

Union Operation

- Union(i,j) - assuming i and j roots, point i to j.
Simple Implementation

- Array of indices (Up[i] is parent of i)
 - Up[x] = 0 means x is a root.

Union

\[\text{Union}(up[], x, y) : \{ \]
//precondition: x and y are roots//
Up[x] := y
\}

Constant Time!

Find

- Design Find operator
 - Recursive version
 - Iterative version

Find(\text{up}[\cdot] : \text{integer array}, x : \text{integer}) : \text{integer} {
//precondition: x is in the range 1 to size//

if \text{up}[x] = 0 then return x
else return Find(\text{up}, \text{up}[x]);
}

Recursive

Find(\text{up}[\cdot] : \text{integer array}, x : \text{integer}) : \text{integer} {
//precondition: x is in the range 1 to size//

while \text{up}[x] \neq 0 do
x := \text{up}[x];
return x;
}

Iterative

A Bad Case

Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree

Find(1) \text{n steps!!}
Example Again

\[\begin{align*}
&1 \quad 2 \quad 3 \quad \cdots \quad 6 \\
&\quad \text{Union}(1, 2) \\
&2 \quad 3 \quad \cdots \quad 6 \\
&\quad \text{Union}(2, 3) \\
&\quad \quad \vdots \\
&3 \quad \cdots \quad 6 \\
&\quad \text{Union}(n-1, n) \\
&1 \quad 3 \quad \cdots \quad 6 \\
&\quad \text{Find}(1) \text{ constant time}
\end{align*} \]

Analysis of Weighted Union

- With weighted union an up-tree of height \(h \) has weight at least \(2^h \).
- Proof by induction
 - Basis: \(h = 0 \). The up-tree has one node, \(2^0 = 1 \)
 - Inductive step: Assume true for all \(h' < h \).

\[n > 2^h \]

\[\log_2 n > h \]

Find(x) in tree T takes \(O(\log n) \) time.

Can we do better?

Example of Worst Case (cont’)

After \(n - 1 = n/2 + n/4 + \ldots + 1 \) Weighted Unions

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).

Elegant Array Implementation

Can save the extra space by storing the complement of weight in the space reserved for the root.
Weighted Union

```plaintext
W-Union(i,j : index)
// i and j are roots //
wi := weight[i];
wj := weight[j];
if wi < wj then
    up[i] := j;
    weight[i] := wi + wj;
else
    up[j] := i;
    weight[j] := wi + wj;
```

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

```
PC-Find(i : index) {
    r := i;
    while up[r] \neq 0 do //find root//
        r := up[r];
    if i \neq r then //compress path//
        k := up[i];
        while k \neq r do
            up[i] := r;
            i := k;
            k := up[k];
        return(r)
    }
```

Disjoint Union / Find

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m \geq n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 › log * n < 7 for all reasonable n. Essentially constant time per operation!
Amortized Complexity

• For disjoint union / find with weighted union and path compression.
 › average time per operation is essentially a constant.
 › worst case time for a PC-Find is $O(\log n)$.
• An individual operation can be costly, but over time the average cost per operation is not.