Today’s Outline

- Announcements
 › Assignment #3 is due May 1 at 11:00pm.

- Today’s Topics:
 › Binary Heaps (Weiss Ch. 6: 6.1-6.3)

Revisiting FindMin

- Application: Find the smallest (or highest priority) item quickly
 › Operating system needs to schedule jobs according to priority instead of FIFO
 › Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 › Find student with highest grade, employee with highest salary etc.

Priority Queue ADT

- Priority Queue can efficiently do:
 › FindMin (and DeleteMin)
 › Insert
- What if we use…
 › Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 › Binary Search Trees: What is the run time for Insert and FindMin?
 › Hash Tables: What is the run time for Insert and FindMin?

Less flexibility ➔ More speed

- Lists
 › If sorted: FindMin is O(1) but Insert is O(N)
 › If not sorted: Insert is O(1) but FindMin is O(N)
- Balanced Binary Search Trees (BSTs)
 › Insert is O(log N) and FindMin is O(log N)
- Hash Tables
 › Insert O(1) but no hope for FindMin
- BSTs look good but…
 › BSTs are efficient for all Finds, not just FindMin
 › We only need FindMin

Better than a speeding BST

- We can do better than Balanced Binary Search Trees?
 › Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 › FindMin is O(1)
 › Insert is O(log N)
 › DeleteMin is O(log N)
Binary Heaps

- A binary heap is a binary tree (NOT a BST) that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - Satisfies the heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
 - The root node is always the smallest node
 - or the largest, depending on the heap order

Heap order property

- A heap provides limited ordering information
- Each path is sorted, but the subtrees are not sorted relative to each other
 - A binary heap is NOT a binary search tree

These are all valid binary heaps (minimum)

Binary Heap vs Binary Search Tree

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row

Examples

- Heaps are not linked structures.
- They are stored in arrays.
- They are extremely efficient, both in time and in space.
Array Implementation of Heaps (Implicit Pointers)

- Root node = A[1]
- Keep track of current size N (number of nodes)

FindMin and DeleteMin

- FindMin: Easy!
 - Return root value A[1]
 - Run time = ?
- DeleteMin:
 - Delete (and return) value at root node

Maintain the Structure Property

- We now have a "Hole" at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete

Maintain the Heap Property

- The last value has lost its node
 - We need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree

DeleteMin: Percolate Down

- Copy smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- What is the run time?
Percolate Down

```haskell
PercDown(i: integer, x: integer): {
    // N is the number elements, i is the hole, 
    // x is the value to insert
    Case{
        no children 2i > N : A[i] := x; //at bottom//
        one child 2i = N : if A[2i] < x then 
        else A[i] := x;
            else j := 2i+1; 
            if A[j] < x then 
                A[i] := A[j]; PercDown(j,x);
            else A[i] := x;
    }
}
```

Bigger Example

```plaintext
1 2 3 4 5 6 7 8 9 10 11
13 14 16 19 21 19 68 65 26 32 31
```
deleteMin deletes the root (13), so the 31 is the input
To Percolate Down, and N becomes 10 instead of 11.1,
PercDown(1,31)

Student Exercise

DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 \[\text{depth} = \lceil \log_2(N) \rceil \]
- Run time of DeleteMin is \(O(\log N) \)

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done

Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree
Insert: Percolate Up

- Start at last node and keep comparing with parent A[i/2]
- If parent larger, copy parent down and go up one level
- Done if parent ≤ item or reached top node A[1]

PercUp

- Define PercUp which percolates new entry to correct spot.
- Note: the parent of i is i/2

```
PercUp(i : integer, x : integer): {
  ????
}
```

Sentinel Values

- Every iteration of Insert needs to test:
 - if it has reached the top node A[1]
 - if parent ≤ item
- Can avoid first test if A[0] contains a very large negative value
 - sentinel = -∞ < item, for all items
- Second test alone always stops at top

Binary Heap Analysis

- Space needed for heap of N nodes: \(O(\text{MaxN})\)
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - FindMin: O(1)
 - DeleteMin and Insert: O(\log N)
 - BuildHeap from N inputs: O(N)

Run time?
Build Heap from any unsorted array

```
BuildHeap {
  for i = N/2 to 1 by -1 PercDown(i, A[i])
}
```

Analysis of Build Heap

- Assume \(N = 2^k - 1 \)
 - Level 1: \(k - 1 \) steps for 1 item
 - Level 2: \(k - 2 \) steps for 2 items
 - Level 3: \(k - 3 \) steps for 4 items
 - Level \(i \): \(k - i \) steps for \(2^{i-1} \) items

Total Steps = \(\sum_{i=1}^{k} (k - i)2^{i-1} = 2^k - k - 1 \) = \(O(N) \)

Other Heap Operations

- **Find(X, H):** Find the element X in heap H of N elements
 - What is the running time? \(O(N) \)
- **FindMax(H):** Find the maximum element in H
 - Where FindMin is \(O(1) \)
 - What is the running time? \(O(N) \)
- **DecreaseKey(P, \Delta, H):** Decrease the key value of node at position P by a positive amount \(\Delta \), e.g., to increase priority
 - First, subtract \(\Delta \) from current value at P
 - Heap order property may be violated
 - so percolate up to fix
 - Running Time: \(O(\log N) \)
Other Heap Operations

- IncreaseKey(P, Δ, H): Increase the key value of node at position P by a positive amount Δ, e.g., to decrease priority
 - First, add Δ to current value at P
 - Heap order property may be violated
 - so percolate down to fix
 - Running Time: O(\log N)

Other Heap Operations

- Delete(P, H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - Use DecreaseKey(P, -\infty, H) followed by DeleteMin
 - Running Time: O(\log N)

Other Heap Operations

- Merge(H1, H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - Can do O(N) Insert operations: O(N \log N) time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)

Priority Queues in AI

- The A* algorithm is the classic heuristic search algorithm in Artificial Intelligence.
- Use of a priority queue is key to this algorithm so that the state with the minimum distance to a goal state can be quickly found and removed from the queue.
- The heap is a good data structure for this task.