Today's Outline

• Announcements
 › Assignment #3 is due May 1 at 11:00pm.

• Today's Topics:
 › Hash Tables (Weiss Ch. 5)

The Need for Speed

• Data structures we have looked at so far
 › Use comparison operations to find items
 › Need $O(\log N)$ time for Find and Insert
• In real world applications, N is typically between 100 and 100,000 (or more)
 › $\log N$ is between 6.6 and 16.6
• Hash tables are an abstract data type designed for $O(1)$ Find and Inserts

Fewer Functions Faster

• compare lists and stacks
 › by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 › insert(L,X) into a list versus push(S,X) onto a stack
• compare trees and hash tables
 › trees provide for known ordering of all elements
 › hash tables just let you (quickly) find an element

Limited Set of Hash Operations

• For many applications, a limited set of operations is all that is needed
 › Insert, Find, and Delete
• Note that no ordering of elements is implied
• For example, a compiler needs to maintain information about the symbols in a program
 › user defined
 › language keywords

Direct Address Tables

• Direct addressing using an array is very fast
• Assume
 › keys are integers in the set $U=\{0,1,\ldots,m-1\}$
 › m is small
 › no two elements have the same key
• Then just store each element at the array location $array[key]$
 › search, insert, and delete are trivial
Direct Access Table

Direct Address Implementation

Delete(Table T, ElementType x)
T[key[x]] = NULL //key[x] is an //integer

Insert(Table t, ElementType x)
T[key[x]] = x

Find(Table t, Key k)
return T[k]

An Issue

• If most keys in U are used
 › direct addressing can work very well (m small)
• The largest possible key in U , say m, may be much larger than the number of elements actually stored ([U] much greater than [K])
 › the table is very sparse and wastes space
 › in worst case, table too large to have in memory
• If most keys in U are not used
 › need to map U to a smaller set closer in size to K

Mapping the Keys

Hashing Schemes

• We want to store N items in a table of size M, at a location computed from the key K (which may not be numeric!)
• Hash function
 › Method for computing table index from key
• Need of a collision resolution strategy
 › How to handle two keys that hash to the same index

“Find” an Element in an Array

• Data records can be stored in arrays.
 › A[0] = ("CHEM 110", Size 89)
• Class size for CSE 373?
 › Linear search the array – O(N) worst case time
 › Binary search - O(log N) worst case
Go Directly to the Element

- What if we could directly index into the array using the key?
 - $A[\text{"CSE 373"}] = \{\text{Size 116}\}$
- Main idea behind hash tables
 - Use a key based on some aspect of the data to index directly into an array
 - $O(1)$ time to access records

Indexing into Hash Table

- Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (i.e., map from U to index)
 - Then use this value to index into an array
 - Hash("CSE 373") = 157, Hash("CSE 143") = 101
- Output of the hash function
 - must always be less than size of array
 - should be as evenly distributed as possible

Choosing the Hash Function

- What properties do we want from a hash function?
 - Want universe of hash values to be distributed randomly to minimize collisions
 - Don't want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 - Want hash value to depend on all values in entire key and their positions

The Key Values are Important

- Notice that one issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 - variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

Simple Hashes

- It's possible to have very simple hash functions if you are certain of your keys
- For example,
 - suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s < 1$
 - Then a very fast, very good hash function is
 - $\text{hash}(s) = \text{floor}(s \cdot m)$
 - where m is the size of the table

Example of a Very Simple Mapping

- $\text{hash}(s) = \text{floor}(s \cdot m)$ maps from $0 \leq s < 1$ to $0..m-1$
 - $m = 10$

Note the even distribution. There are collisions, but we will deal with them later.
Perfect Hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values.
- You must know every single key beforehand and be able to derive a function that works one-to-one.
- This is rare.

Mod Hash Function

- One solution for a less constrained key set:
 - modular arithmetic
- a \(\mod \) size
 - remainder when "a" is divided by "size"
 - in C or Java this is written as \(r = a \mod size \);
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101

Modulo Mapping

- \(a \mod m \) maps from integers to 0..\(m-1 \)
 - one to one? no
 - onto? yes

Hashing Integers

- If keys are integers, we can use the hash function:
 - \(Hash(key) = key \mod TableSize \)

Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 - all keys map to the same index
 - Need to pick TableSize carefully: often, a prime number

Nonnumerical Keys

- Many hash functions assume that the universe of keys is the natural numbers \(\mathbb{N} = \{0, 1, \ldots\} \)
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers

Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string \(c_0c_1c_2 \ldots c_n \) to a relatively small number \(c_0+c_1+c_2+\ldots+c_n \mod \text{size} \).
Hash Must be Onto Table

- Problem 2: What if TableSize is 10,000 and all keys are 8 or less characters long?
 - chars have values between 0 and 127
 - Keys will hash only to positions 0 through $8*127 = 1016$
- Need to distribute keys over the entire table or the extra space is wasted

Problems with Adding Characters

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - “abc”, “bca”, and “cab” all add up to the same value (recall this was Problem 1)

Characters as Integers

- A character string can be thought of as a base 256 number. The string $c_1c_2...c_n$ can be thought of as the number $c_n + 256c_{n-1} + 256^2c_{n-2} + ... + 256^{n-1}c_1$
- Use Horner’s Rule to Hash! (see Ex. 2.14 or Hw 2)
 \[
 r = 0; \\
 \text{for } i = 1 \text{ to } n \text{ do} \\
 r := (c[i] + 256*r) \mod \text{TableSize}
 \]

Collisions

- A collision occurs when two different keys hash to the same value
 - E.g. For TableSize = 17, the keys 18 and 35 hash to the same value for the mod17 hash function
 - $18 \mod 17 = 1$ and $35 \mod 17 = 1$
- Cannot store both data records in the same slot in array!

Collision Resolution

- Separate Chaining
 - Use data structure (such as a linked list) to store multiple items that hash to the same slot
- Open addressing (or probing)
 - search for empty slots using a second function and store item in first empty slot that is found

Resolution by Chaining

- Each hash table cell holds pointer to linked list of records with same hash value
 - Collision: Insert item into linked list
 - To Find an item: compute hash value, then do Find on linked list
 - Note that there are potentially as many as TableSize lists
Why Lists?

• Can use List ADT for Find/Insert/Delete in linked list
 › O(N) runtime where N is the number of elements in the particular chain
• Can also use Binary Search Trees
 › O(log N) time instead of O(N) if balanced
 › But the number of elements to search through should be small (otherwise the hashing function is bad or the table is too small)
 › generally not worth the overhead

Load Factor of a Hash Table

• Let N = number of items to be stored
• Load factor $\lambda = \frac{N}{\text{TableSize}}$
 › TableSize = 101 and N =505, then $\lambda = 5$
 › TableSize = 101 and N = 10, then $\lambda = 0.1$
• Average length of chained list $= \lambda$ and so average time for accessing an item = $O(1) + O(\lambda)$
 › Want λ to be smaller than 1 but close to 1 if good hashing function (i.e. TableSize $\approx N$)
 › With chaining hashing continues to work for $\lambda > 1$

Resolution by Open Addressing

• No links, all keys are in the table
 › reduced overhead saves space
• When searching for X, check locations $h_1(X), h_2(X), h_3(X), ...$ until either
 › X is found; or
 › we find an empty location (X not present)
• Various flavors of open addressing differ in which probe sequence they use

Cell Full? Keep Looking.

• $h_i(X) = (\text{Hash}(X) + F(i)) \mod \text{TableSize}$
 › Define $F(0) = 0$
• F is the collision resolution function. Some possibilities:
 › Linear: $F(i) = i$
 › Quadratic: $F(i) = i^2$
 › Double Hashing: $F(i) = i\cdot\text{Hash}_2(X)$

Linear Probing

• When searching for K, check locations $h(K), h(K)+1, h(K)+2, ... \mod \text{TableSize}$ until either
 › K is found; or
 › we find an empty location (K not present)
• If table is very sparse, almost like separate chaining.
• When table starts filling, we get clustering but still constant average search time.
• Full table \Rightarrow infinite loop.

Primary Clustering Problem

• Once a block of a few contiguous occupied positions emerges in table, it becomes a “target” for subsequent collisions
• As clusters grow, they also merge to form larger clusters.
• Primary clustering: elements that hash to different cells probe same alternative cells
Quadratic Probing

• When searching for X, check locations $h_1(X), h_1(X) + 1^2, h_1(X) + 2^2, \ldots \mod \text{TableSize}$ until either
 › X is found; or
 › we find an empty location (X not present)
• No primary clustering but secondary clustering possible

Double Hashing

• When searching for X, check locations $h_2(X), h_2(X) + h_2(X), h_2(X) + 2h_2(X), \ldots \mod \text{TableSize}$ until either
 › X is found; or
 › we find an empty location (X not present)
• Must be careful about $h_2(X)$
 › Not 0 and not a divisor of M
 › e.g., $h_1(k) = k \mod m_1, h_2(k) = 1 + (k \mod m_2)$ where m_2 is slightly less than m_1

Rules of Thumb

• Separate chaining is simple but wastes space…
• Linear probing uses space better, is fast when tables are sparse
• Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation

Rehashing – Rebuild the Table

• Need to use lazy deletion if we use probing (why?)
 › Need to mark array slots as deleted after Delete
 › consequently, deleting doesn’t make the table any less full than it was before the delete
• If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and inserts may fail

Rehashing

• Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 › Go through old hash table, ignoring items marked deleted
 › Recompute hash value for each non-deleted key and put the item in new position in new table
 › Cannot just copy data from old table because the bigger table has a new hash function
• Running time is $O(N)$ but happens very infrequently
 › Not good for real-time safety critical applications

Rehashing Example

• Open hashing – $h_1(x) = x \mod 5$ rehashes to $h_2(x) = x \mod 11$.

<table>
<thead>
<tr>
<th>$\lambda = 1$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>37</td>
<td>83</td>
<td>52</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\lambda = 5/11$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>37</td>
<td>83</td>
<td>52</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Caveats

• Hash functions are very often the cause of performance bugs.
• Hash functions often make the code not portable.
• If a particular hash function behaves badly on your data, then pick another.
• Always check where the time goes