Today’s Outline

- Announcements
 › Assignment #2 due Fri, April 19 at the BEGINNING of lecture

- Today’s Topics:
 › Review AVL Trees (Weiss 4.4)
 › Splay Trees (Weiss 4.5)

Splay Trees

AVL Trees

- Keep them balanced!
- 4 rebalancing operations
 › left-left
 › right-right
 › right-left
 › left-right

AVL Practice

- left-left
 • Which is the node to rebalance?
 • Where are k₁ and k₂?

AVL Practice

- right-left double
 • Which is the node to rebalance?
 • Where are k₁, k₂, and k₃?
AVL Practice

- right-left double

Fun Applet for Viewing

- http://webdiis.unizar.es/asignaturas/ED/A/AVLTree/avltree.html

Complexity

- What is the complexity of a single rotation?
- What is the complexity of a double rotation?

Complexity

- What is the complexity of adding a new node?
 1. find the place to add \(O(\log n) \)
 2. link it in \(O(1) \)
 3. go upward checking for imbalance \(O(\log n) \)
 4. possibly do a rotation \(O(1) \)

AVL Trees

- Always balanced
 - rebalanced after each insert
 - rebalanced after each delete
- Even if not badly unbalanced
- So, what else can we do?

Self adjusting Trees

- Ordinary binary search trees have no balance conditions
 - what you get from insertion order is it
- Balanced trees like AVL trees enforce a balance condition when nodes change
 - tree is always balanced after an insert or delete
- Self-adjusting trees get reorganized over time as nodes are accessed
 - Tree adjusts after insert, delete, or find
Splay Trees

• Splay trees are tree structures that:
 › Are not perfectly balanced all the time
 › Data most recently accessed is near the root.
 (principle of locality; 80-20 “rule”)
• The procedure:
 › After node X is accessed, perform “splaying”
 operations to bring X to the root of the tree.
 › Do this in a way that leaves the tree more
 balanced as a whole

Zig-Zig and Zig-Zag

Parent and grandparent
in same direction.

zig-zig

Parent and grandparent
in different directions.

zig-zag

Splay Tree Terminology

• Let X be a non-root node with ≥ 2 ancestors.
 • P is its parent node.
 • G is its grandparent node.

Splay Tree Operations

1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
 • Single Rotations (X has a P (the root) but no G)
 ZigFromLeft, ZigFromRight
 • Double Rotations (X has both a P and a G)
 ZigZigFromLeft, ZigZigFromRight
 ZigZagFromLeft, ZigZagFromRight

Zig at depth 1 (root)

• "Zig" is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using Find)

• ZigFromLeft moves R to the top → faster access next time

Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top
Zig-Zag operation

- “Zig-Zag” consists of two rotations of the opposite direction (assume R is the node that was accessed)

Zig-Zig operation

- “Zig-Zig” consists of two single rotations of the same direction (R is the node that was accessed)

Decreasing depth -"autobalance"

Splay Tree Insert and Delete

- Insert x
 - Insert x as normal then splay x to root.
- Delete x
 - Splay x to root and remove it. (note: the node does not have to be leaf or single child node like in BST delete.) Two trees remain, right subtree and left subtree.
 - Splay the max in the left subtree to the root
 - Attach the right subtree to the new root of the left subtree.

Example Insert

- Inserting in order 1,2,3,...,8
- Without self-adjustment

With Self-Adjustment

- O(n^2) time for n Insert
 - Why?
With Self-Adjustment

Each Insert takes O(1) time therefore O(n) time for n Insert!!
But the resulting tree is linear till you do a find.

Example Deletion

Splay (zig)
attach

Analysis of Splay Trees

• Splay trees tend to be balanced
 › M operations takes time O(M log N) for M > N
 operations on N items. (proof is difficult)
 › Amortized O(log n) time.
• Splay trees have good “locality” properties
 › Recently accessed items are near the root of the tree.
 › Items near an accessed one are pulled toward the root.

Beyond Binary Search Trees: Multi-Way Trees

• Example: B-tree of order 3 has 2 or 3
 children per node

• Search for 8