Today’s Outline

• Announcements
 – Assignment #2 due Fri, Oct 19 at the BEGINNING of lecture. This is a pen and paper assignment; print nicely or type, please.

• Today’s Topics:
 – Binary Search Trees
 – Complexity Analysis (always)

Why Do We Need Trees?

• Lists, Stacks, and Queues are linear relationships
• Information often contains hierarchical relationships
 – File directories or folders
 – Moves in a game
 – Hierarchies in organizations
• Can build a tree to support fast searching

Tree Jargon

• root
• nodes and edges
• leaves
• parent, children, siblings
• ancestors, descendants
• subtrees
• path, path length
• height, depth

More Tree Jargon

• Length of a path = number of edges
• Depth of a node N = length of path from root to N
• Height of node N = length of longest path from N to a leaf
• Depth of tree = depth of deepest node
• Height of tree = height of root

Implementation of Trees

• One possible pointer-based Implementation
 – tree nodes with value and a pointer to each child
 – but how many pointers should we allocate space for?
• A more flexible pointer-based implementation
 – 1st Child / Next Sibling List Representation
 – Each node has 2 pointers: one to its first child and one to next sibling
 – Can handle arbitrary number of children
Arbitrary Branching

Tree Calculations

Recall: height is max number
of edges from root to a leaf

Find the height of the tree...

Height(null) = -1
Height = max(height(left), height(right)) + 1

runtime for tree of TS nodes: O(TS)

Binary Trees

- Binary tree is
 - a root
 - left subtree (maybe empty)
 - right subtree (maybe empty)

- Representation:

More Recursive Tree Calculations:
Binary Tree Traversals

A traversal is an order for visiting all the nodes of a binary tree

Three types:
- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root

Traversals

```c
void traverse(BNode t){
    if (t != NULL)
        traverse(t.left);
    print t.element;
        traverse (t.right);
    }
```

Which one is this?
ADTs Seen So Far

- Stack
 - Push
 - Pop

- Queue
 - Enqueue
 - Dequeue

What are these in Java?
- add
- remove

The Dictionary ADT

- Data:
 - a set of (key, value) pairs

- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

- Java has a Map interface that has similar operations with different names: put, containsKey, get, ...

A Modest Few Uses

- Search (databases): phone directories or other large data sets (genome maps, web pages)
- Networks: Router tables
- Operating systems: Page tables
- Compilers: Symbol tables
- Image Analysis: Object-feature tables
- Image Retrieval: Large image databases

Probably the most widely used ADT!

Implementations: Complexity

For dictionary with n key/value pairs
- insert: \(O(1)\)
- find: \(O(n)\)
- delete: \(O(n)\)

- Unsorted Linked-list
- Unsorted array
- Sorted array

Implementations

For dictionary with n key/value pairs

- Unsorted linked-list: \(O(1)\) * \(O(n)\) \(O(n)\)
- Unsorted array: \(O(1)\) * \(O(n)\) \(O(n)\)
- Sorted linked list: \(O(n)\) \(O(n)\) \(O(n)\)
- Sorted array: \(O(n)\) \(O(\log n)\) \(O(n)\)

*Note: If we do not allow duplicates values to be inserted, we would need to do \(O(n)\) work (a find operation) to check for a key's existence before insertion

Binary Search Tree Data Structure

- Structural property
 - each node has \(\leq 2\) children
 - result:
 - storage is small
 - operations are simple
 - average depth is small

- Order property
 - all keys in left subtree smaller than root's key
 - all keys in right subtree larger than root's key
 - result: easy to find any given key

So, when I store, I have to test where to put the new node.
Are these BSTs?

Find in BST, Recursive

Node Find(Object key, Node root) {
if (root == NULL) return NULL;
if (key < root.key) return Find(key, root.left);
else if (key > root.key) return Find(key, root.right);
else return root;
}

Runtime: Worst Case: O(n)
Actual: O(depth)

Find in BST, Iterative

Node Find(Object key, Node root) {
while (root != NULL && root.key != key) {
if (key < root.key) root = root.left;
else root = root.right;
}
return root;
}

Runtime:

Insert Operation

• Insert(T: tree, X: element)
 – Do a “Find” operation for X
 – If X is found, update (no need to insert)
 – Else, “Find” stops at a NULL pointer
 – Insert Node with X there
• Example: Insert 95

Can we convert Find into Insert?

Node Find(Object key, Node root) {
while (root != NULL && root.key != key) {
if (key < root.key) root = root.left;
else root = root.right;
}
return root;
}
Can we convert Find into Insert?

The idea (incomplete)

while (root != NULL && root.key != key) {
 if (key < root.key)
 if root.left != null
 root = root.left;
 else root.left = new
 else
 if root.right != null
 root = root.right;
 else root.right = new
}

Try some Inserts in a BST

BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.
 Runtime depends on the order!
 – in given order
 – in reverse order
 – median first, then left median, right median, etc.

In General

• Binary Search Trees are not balanced.
• The depth can range from depth n for an n node tree in the worst case, in which case the tree is just a linear list
• To the best case which is a perfectly balanced tree, in which case the depth is log₂n.

FindMin/FindMax are Easy

• Find minimum

• Find maximum

Delete Operation

• Delete is a bit trickier than insert... Why?
• Suppose you want to delete 10
• Strategy:
 – Find 10
 – Delete the node containing 10
• Problem: When you delete a node, what do you replace it by?
Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:
 - If it has no children, by NULL
 - If it has 1 child, by that child
 - If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)

Delete “5” - No children

Find 5 node

Then Free the 5 node and NULL the pointer to it

Delete “24” - One child

Find 24 node

Then Free the 24 node and replace the pointer to it with a pointer to its child

Delete “10” - two children

Find 10,
Copy the smallest value in right subtree into the node
Then (recursively) Delete node with smallest value in right subtree
Note: it cannot have two children

Then Delete “11” - One child

Remember 11 node

Then Free the 11 node and replace the pointer to it with a pointer to its child

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max)
Balanced BST

Observation

- **BST**: the shallower the better!
- For a BST with \(n \) nodes
 - Average height is \(\Theta(\log n) \)
 - Worst case height is \(\Theta(n) \)
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a **Balance Condition** that
1. ensures depth is \(\Theta(\log n) \) – strong enough!
2. is easy to maintain – not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

2. Left and right subtrees of the root have equal **height**

3. Left and right subtrees of *every node* have equal number of nodes

4. Left and right subtrees of *every node* have equal **height**