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The AVL Tree Data Structure 
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Structural properties 
1. Binary tree property 
2. Balance property: 

balance of every node is 
between -1 and 1 

Result: 
Worst-case depth is 

O(log n)  
 

Ordering property 
– Same as for BST 
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AVL Tree Deletion 
• Similar to insertion: do the delete and then rebalance 

– Rotations and double rotations  
– Imbalance may propagate upward so rotations at multiple nodes 

along path to root may be needed (unlike with insert) 
 

• Simple example: a deletion on the right causes the left-left grandchild 
to be too tall 

– Call this the left-left case, despite deletion on the right 
– insert(6) insert(3) insert(7) insert(1) delete(7) 
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Properties of BST delete 

We first do the normal BST deletion: 
– 0 children: just delete it 
– 1 child: delete it, connect child to parent 
– 2 children: put successor in your place,  
 delete successor leaf 

 
Which nodes’ heights may have changed: 

– 0 children: path from deleted node to root 
– 1 child: path from deleted node to root 
– 2 children: path from deleted successor leaf  to root 

 
Will rebalance as we return along the “path in question” to the root 
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Case #1 Left-left due to right deletion 
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• Start with some subtree where if right child becomes shorter we are 
unbalanced due to height of left-left grandchild 

• A delete in the right child could cause this right-side shortening 
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Case #1: Left-left due to right deletion 
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• Same single rotation as when an insert in the left-left grandchild 
caused imbalance due to X becoming taller 
 

• But here the “height” at the top decreases, so more rebalancing farther 
up the tree might still be necessary 
 



Case #2: Left-right due to right deletion 
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• Same double rotation when an insert in the left-right grandchild 
caused imbalance due to c becoming taller 
 

• But here the “height” at the top decreases, so more rebalancing farther 
up the tree might still be necessary 
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No third right-deletion case needed 

So far we have handled these two cases: 
left-left    left-right 
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But what if the two left grandchildren are now both too tall (h+1)? 
• Then it turns out left-left solution still works 
• The children of the “new top node” will have heights differing by 

1 instead of 0, but that’s fine 

And the other half 

• Naturally two more mirror-image cases (not shown here) 
– Deletion in left causes right-right grandchild to be too tall 
– Deletion in left causes right-left grandchild to be too tall 
– (Deletion in left causes both right grandchildren to be too tall, 

in which case the right-right solution still works) 
 

• And, remember, “lazy deletion” is a lot simpler and might suffice 
for your needs 
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