
CSE373: Data Structures & Algorithms
Optional Slides: AVL Delete

Dan Grossman
Fall 2013

2

The AVL Tree Data Structure

4

13 10 6 2

11 5

8

14 12 7 9

Structural properties
1. Binary tree property
2. Balance property:

balance of every node is
between -1 and 1

Result:
Worst-case depth is

O(log n)

Ordering property
– Same as for BST

15

Fall 2013 CSE373: Data Structures & Algorithms

Fall 2013 CSE373: Data Structures & Algorithms 3

AVL Tree Deletion
• Similar to insertion: do the delete and then rebalance

– Rotations and double rotations
– Imbalance may propagate upward so rotations at multiple nodes

along path to root may be needed (unlike with insert)

• Simple example: a deletion on the right causes the left-left grandchild
to be too tall

– Call this the left-left case, despite deletion on the right
– insert(6) insert(3) insert(7) insert(1) delete(7)

6

3

0

1

2

1

7
1

7
111

3

1 6
0 0

1

Properties of BST delete

We first do the normal BST deletion:
– 0 children: just delete it
– 1 child: delete it, connect child to parent
– 2 children: put successor in your place,
 delete successor leaf

Which nodes’ heights may have changed:

– 0 children: path from deleted node to root
– 1 child: path from deleted node to root
– 2 children: path from deleted successor leaf to root

Will rebalance as we return along the “path in question” to the root

 Fall 2013 4 CSE373: Data Structures & Algorithms

20 9 2

15 5

12

7 10

Case #1 Left-left due to right deletion

Fall 2013 CSE373: Data Structures & Algorithms 5

• Start with some subtree where if right child becomes shorter we are
unbalanced due to height of left-left grandchild

• A delete in the right child could cause this right-side shortening

h
a

Z
Y

b

X

h+1 h
h+1

h+2

h+3

Case #1: Left-left due to right deletion

Fall 2013 CSE373: Data Structures & Algorithms 6

h
a

Z
Y

b

X

h+1 h
h+1

h+2

h+3 b

Z Y

a
h+1

h

h+1
h+2

X

h
h+1

• Same single rotation as when an insert in the left-left grandchild
caused imbalance due to X becoming taller

• But here the “height” at the top decreases, so more rebalancing farther
up the tree might still be necessary

Case #2: Left-right due to right deletion

Fall 2013

a

h-1h h

V U

h+1

h+2

h+3

Z

X

b
c

h+1
h

Z

c

X
h-1

h+1
h

h+1

V U

h+2

Z

a b
h h+1

h

• Same double rotation when an insert in the left-right grandchild
caused imbalance due to c becoming taller

• But here the “height” at the top decreases, so more rebalancing farther
up the tree might still be necessary

CSE373: Data Structures & Algorithms 7

No third right-deletion case needed

So far we have handled these two cases:
left-left left-right

Fall 2013 8 CSE373: Data Structures & Algorithms

h
a

Z
Y

b

X

h+1 h
h+1

h+2

h+3 a

h-1 h h

V U

h+1

h+2

h+3

Z

X

b
c

h+1
h

Z

But what if the two left grandchildren are now both too tall (h+1)?
• Then it turns out left-left solution still works
• The children of the “new top node” will have heights differing by

1 instead of 0, but that’s fine

And the other half

• Naturally two more mirror-image cases (not shown here)
– Deletion in left causes right-right grandchild to be too tall
– Deletion in left causes right-left grandchild to be too tall
– (Deletion in left causes both right grandchildren to be too tall,

in which case the right-right solution still works)

• And, remember, “lazy deletion” is a lot simpler and might suffice
for your needs

Fall 2013 9 CSE373: Data Structures & Algorithms

