Disjoint sets

- A set is a collection of elements (no-repeats)
- Two sets are **disjoint** if they have no elements in common
 - \(S_1 \cap S_2 = \emptyset \)
- Example: \(\{a, e, c\} \) and \(\{d, b\} \) are disjoint
- Example: \(\{x, y, z\} \) and \(\{t, u, x\} \) are not disjoint

Partitions

A partition \(P \) of a set \(S \) is a set of sets \(\{S_1, S_2, \ldots, S_n\} \) such that every element of \(S \) is in **exactly one** \(S_i \)

Put another way:
- \(S_1 \cup S_2 \cup \ldots \cup S_n = S \)
- \(i \neq j \) implies \(S_i \cap S_j = \emptyset \) (sets are disjoint with each other)

Example:
- Let \(S \) be \(\{a, b, c, d, e\} \)
- One partition: \(\{a\}, \{d, e\}, \{b, c\} \)
- Another partition: \(\{a, b, c\}, \emptyset, \{d\}, \{e\} \)
- A third: \(\{a, b, c, d, e\} \)
- Not a partition: \(\{a, b, d\}, \{c, d, e\} \)
- Not a partition of \(S \): \(\{a, b\}, \{e, c\} \)

Binary relations

- \(S \times S \) is the set of all pairs of elements of \(S \)
 - Example: If \(S = \{a, b, c\} \)
 then \(S \times S = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\} \)
- A binary relation \(R \) on a set \(S \) is any subset of \(S \times S \)
 - Write \(R(x,y) \) to mean \((x,y) \) is “in the relation”
 - (Unary, ternary, quaternary, … relations defined similarly)
- Examples for \(S \) = people-in-this-room
 - Sitting-next-to-each-other relation
 - First-sitting-right-of-second relation
 - Went-to-same-high-school relation
 - Same-gender-relation
 - First-is-younger-than-second relation

Properties of binary relations

- A binary relation \(R \) over set \(S \) is **reflexive** means \(R(a,a) \) for **all** \(a \) in \(S \)
- A binary relation \(R \) over set \(S \) is **symmetric** means \(R(a,b) \) if and only if \(R(b,a) \) for **all** \(a, b \) in \(S \)
- A binary relation \(R \) over set \(S \) is **transitive** means
 - If \(R(a,b) \) and \(R(b,c) \) then \(R(a,c) \) for **all** \(a, b, c \) in \(S \)
- Examples for \(S \) = people-in-this-room
 - Sitting-next-to-each-other relation
 - First-sitting-right-of-second relation
 - Went-to-same-high-school relation
 - Same-gender-relation
 - First-is-younger-than-second relation
Equivalence relations

- A binary relation R is an equivalence relation if R is reflexive, symmetric, and transitive.

- Examples
 - Same gender
 - Connected roads in the world
 - Graduated from same high school?
 - …

Punch-line

- Every partition induces an equivalence relation
- Every equivalence relation induces a partition

Example

- Let $S = \{a, b, c, d, e\}$
- One partition: $\{a, b, c\}$, $\{d\}$, $\{e\}$
- The corresponding equivalence relation:
 (a, a), (b, b), (c, c), (a, b), (a, c), (b, c), (b, d), (d, d), (e, e)

The plan

- What are disjoint sets
 - And how are they “the same thing” as equivalence relations
- The union-find ADT for disjoint sets
- Applications of union-find

Next lecture:

- Basic implementation of the ADT with “up trees”
- Optimizations that make the implementation much faster

The operations

- Given an unchanging set S, create an initial partition of a set
 - Typically each item in its own subset: $\{a\}$, $\{b\}$, $\{c\}$, …
 - Give each subset a “name” by choosing a representative element
- Operation find takes an element of S and returns the representative element of the subset it is in
- Operation union takes two subsets and (permanently) makes one larger subset
 - A different partition with one fewer set
 - Affects result of subsequent find operations
 - Choice of representative element up to implementation

Example

- Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Let initial partition be (will highlight representative elements red)
 - $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$, $\{6\}$, $\{7\}$, $\{8\}$, $\{9\}$
- union(2, 5):
 - $\{1\}$, $\{2, 5\}$, $\{3\}$, $\{4\}$, $\{6\}$, $\{7\}$, $\{8\}$, $\{9\}$
 - find(4) = 4, find(2) = 2, find(5) = 2
 - union(4, 6), union(2, 7)
 - $\{1\}$, $\{2, 4, 5, 6, 7\}$, $\{3\}$, $\{8\}$, $\{9\}$
- find(4) = 6, find(2) = 2, find(5) = 2
- union(2, 6)
 - $\{1\}$, $\{2, 4, 5, 6, 7\}$, $\{3\}$, $\{8\}$, $\{9\}$
No other operations

- All that can “happen” is sets get unioned
 - No “un-union” or “create new set” or …
- As always: trade-offs – implementations will exploit this small ADT
- Surprisingly useful ADT: list of applications after one example surprising one
 - But not as common as dictionaries or priority queues

Example application: maze-building

- Build a random maze by erasing edges
 - Possible to get from anywhere to anywhere
 - Including “start” to “finish”
 - No loops possible without backtracking
 - After a “bad turn” have to “undo”

Maze building

Pick start edge and end edge

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get from start to finish

Problems with this approach

1. How can you tell when there is a path from start to finish?
 - We do not really have an algorithm yet
2. We have cycles, which a “good” maze avoids
 - Want one solution and no cycles

Revised approach

- Consider edges in random order
- But only delete them if they introduce no cycles (how? TBD)
- When done, will have one way to get from any place to any other place (assuming no backtracking)
- Notice the funny-looking tree in red
Cells and edges

- Let's number each cell
 - 36 total for 6 x 6
- An (internal) edge (x,y) is the line between cells x and y
 - 60 total for 6x6: (1,2), (2,3), ..., (1,7), (2,8), ...

Example step

Find(8) = 7
Find(14) = 20
Union(7,20)

The trick

- Partition the cells into **disjoint sets**: “are they connected”
 - Initially every cell is in its own subset
- If an edge would connect two different subsets:
 - then remove the edge and **union** the subsets
 - else leave the edge because removing it makes a cycle

The algorithm

- \(P = \) disjoint sets of connected cells, initially each cell in its own 1-element set
- \(E = \) set of edges not yet processed, initially all (internal) edges
- \(M = \) set of edges kept in maze (initially empty)

while \(P \) has more than one set {
 - Pick a random edge \((x,y)\) to remove from \(E \)
 - \(u = \text{find}(x) \)
 - \(v = \text{find}(y) \)
 - if \(u==v \) then add \((x,y)\) to \(M \) // same subset, do not create cycle
 - else union \((u,v)\) // do not put edge in \(M \), connect subsets
}

Add remaining members of \(E \) to \(M \), then output \(M \) as the maze

Example step

Pick (8,14)

Add edge to \(M \)

Pick (19,20)
At the end

• Stop when P has one set
• Suppose green edges are already in M and black edges were not yet picked
 – Add all black edges to M

Other applications

• Maze-building is:
 – Cute
 – Homework 4 😊
 – A surprising use of the union-find ADT
• Many other uses (which is why an ADT taught in CSE373):
 – Road/network/graph connectivity (will see this again)
 • “connected components” e.g., in social network
 – Partition an image by connected-pixels-of-similar-color
 – Type inference in programming languages
• Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements

Start 1 2 3 4 5 6 P {1,2,3,4,5,6,7,… 36}
 7 8 9 10 11 12
 13 14 15 16 17 18
 19 20 21 22 23 24
 25 26 27 28 29 30
 31 32 33 34 35 36 End