
CSE373: Data Structures & Algorithms

Lecture 9: Disjoint Sets & Union-Find

Dan Grossman

Fall 2013

The plan

• What are disjoint sets

– And how are they “the same thing” as equivalence relations

• The union-find ADT for disjoint sets

• Applications of union-find

Next lecture:

• Basic implementation of the ADT with “up trees”

• Optimizations that make the implementation much faster

Fall 2013 2 CSE373: Data Structures & Algorithms

Disjoint sets

• A set is a collection of elements (no-repeats)

• Two sets are disjoint if they have no elements in common

– S1  S2 = 

• Example: {a, e, c} and {d, b} are disjoint

• Example: {x, y, z} and {t, u, x} are not disjoint

Fall 2013 3 CSE373: Data Structures & Algorithms

Partitions

A partition P of a set S is a set of sets {S1,S2,…,Sn} such that

every element of S is in exactly one Si

Put another way:

– S1  S2  . . .  Sk = S

– i  j implies Si  Sj =  (sets are disjoint with each other)

Example:

– Let S be {a,b,c,d,e}

– One partition: {a}, {d,e}, {b,c}

– Another partition: {a,b,c}, , {d}, {e}

– A third: {a,b,c,d,e}

– Not a partition: {a,b,d}, {c,d,e}

– Not a partition of S: {a,b}, {e,c}

Fall 2013 4 CSE373: Data Structures & Algorithms

Binary relations

• S x S is the set of all pairs of elements of S

– Example: If S = {a,b,c}

 then S x S = {(a,a),(a,b),(a,c),(b,a),(b,b),(b,c), (c,a),(c,b),(c,c)}

• A binary relation R on a set S is any subset of S x S

– Write R(x,y) to mean (x,y) is “in the relation”

– (Unary, ternary, quaternary, … relations defined similarly)

• Examples for S = people-in-this-room

– Sitting-next-to-each-other relation

– First-sitting-right-of-second relation

– Went-to-same-high-school relation

– Same-gender-relation

– First-is-younger-than-second relation

Fall 2013 5 CSE373: Data Structures & Algorithms

Properties of binary relations

• A binary relation R over set S is reflexive means

R(a,a) for all a in S

• A binary relation R over set S is symmetric means

R(a,b) if and only if R(b,a) for all a,b in S

• A binary relation R over set S is transitive means

 If R(a,b) and R(b,c) then R(a,c) for all a,b,c in S

• Examples for S = people-in-this-room

– Sitting-next-to-each-other relation

– First-sitting-right-of-second relation

– Went-to-same-high-school relation

– Same-gender-relation

– First-is-younger-than-second relation

Fall 2013 6 CSE373: Data Structures & Algorithms

Equivalence relations

• A binary relation R is an equivalence relation if R is reflexive,

symmetric, and transitive

• Examples

– Same gender

– Connected roads in the world

– Graduated from same high school?

– …

Fall 2013 7 CSE373: Data Structures & Algorithms

Punch-line

• Every partition induces an equivalence relation

• Every equivalence relation induces a partition

• Suppose P={S1,S2,…,Sn} be a partition

– Define R(x,y) to mean x and y are in the same Si

• R is an equivalence relation

• Suppose R is an equivalence relation over S

– Consider a set of sets S1,S2,…,Sn where

(1) x and y are in the same Si if and only if R(x,y)

(2) Every x is in some Si

• This set of sets is a partition

Fall 2013 8 CSE373: Data Structures & Algorithms

Example

• Let S be {a,b,c,d,e}

• One partition: {a,b,c}, {d}, {e}

• The corresponding equivalence relation:

 (a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e)

Fall 2013 9 CSE373: Data Structures & Algorithms

The plan

• What are disjoint sets

– And how are they “the same thing” as equivalence relations

• The union-find ADT for disjoint sets

• Applications of union-find

Next lecture:

• Basic implementation of the ADT with “up trees”

• Optimizations that make the implementation much faster

Fall 2013 10 CSE373: Data Structures & Algorithms

The operations

• Given an unchanging set S, create an initial partition of a set

– Typically each item in its own subset: {a}, {b}, {c}, …

– Give each subset a “name” by choosing a representative

element

• Operation find takes an element of S and returns the

representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes

one larger subset

– A different partition with one fewer set

– Affects result of subsequent find operations

– Choice of representative element up to implementation

Fall 2013 11 CSE373: Data Structures & Algorithms

Example

• Let S = {1,2,3,4,5,6,7,8,9}

• Let initial partition be (will highlight representative elements red)

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}

• union(2,5):

{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9}

• find(4) = 4, find(2) = 2, find(5) = 2

• union(4,6), union(2,7)

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9}

• find(4) = 6, find(2) = 2, find(5) = 2

• union(2,6)

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9}

Fall 2013 12 CSE373: Data Structures & Algorithms

No other operations

• All that can “happen” is sets get unioned

– No “un-union” or “create new set” or …

• As always: trade-offs – implementations will exploit this small

ADT

• Surprisingly useful ADT: list of applications after one example

surprising one

– But not as common as dictionaries or priority queues

Fall 2013 13 CSE373: Data Structures & Algorithms

Example application: maze-building

• Build a random maze by erasing edges

– Possible to get from anywhere to anywhere

• Including “start” to “finish”

– No loops possible without backtracking

• After a “bad turn” have to “undo”

Fall 2013 14 CSE373: Data Structures & Algorithms

Maze building

Pick start edge and end edge

Fall 2013 15 CSE373: Data Structures & Algorithms

Start

End

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get

from start to finish

Fall 2013 16 CSE373: Data Structures & Algorithms

Start

End

Problems with this approach

1. How can you tell when there is a path from start to finish?

– We do not really have an algorithm yet

2. We have cycles, which a “good” maze avoids

– Want one solution and no cycles

Fall 2013 17 CSE373: Data Structures & Algorithms

Start

End

Revised approach

• Consider edges in random order

• But only delete them if they introduce no cycles (how? TBD)

• When done, will have one way to get from any place to any

other place (assuming no backtracking)

• Notice the funny-looking tree in red

Fall 2013 18 CSE373: Data Structures & Algorithms

Start

End

Cells and edges

• Let’s number each cell

– 36 total for 6 x 6

• An (internal) edge (x,y) is the line between cells x and y

– 60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …

Fall 2013 19 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The trick

• Partition the cells into disjoint sets: “are they connected”

– Initially every cell is in its own subset

• If an edge would connect two different subsets:

– then remove the edge and union the subsets

– else leave the edge because removing it makes a cycle

Fall 2013 20 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The algorithm

• P = disjoint sets of connected cells, initially each cell in its own

1-element set

• E = set of edges not yet processed, initially all (internal) edges

• M = set of edges kept in maze (initially empty)

while P has more than one set {

– Pick a random edge (x,y) to remove from E

– u = find(x)

– v = find(y)

– if u==v

 then add (x,y) to M // same subset, do not create cycle

 else union(u,v) // do not put edge in M, connect subsets

}

Add remaining members of E to M, then output M as the maze

Fall 2013 21 CSE373: Data Structures & Algorithms

Example step

Fall 2013 22 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Pick (8,14)

P

{1,2,7,8,9,13,19}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{14,20,26,27}

{15,16,21}

{18}

{25}

{28}

{31}

{22,23,24,29,30,32

 33,34,35,36}

Example step

Fall 2013 23 CSE373: Data Structures & Algorithms

P

{1,2,7,8,9,13,19}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{14,20,26,27}

{15,16,21}

{18}

{25}

{28}

{31}

{22,23,24,29,30,32

 33,34,35,36}

Find(8) = 7

Find(14) = 20

Union(7,20)

P

{1,2,7,8,9,13,19,14,20,26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{15,16,21}

{18}

{25}

{28}

{31}

{22,23,24,29,30,32

 33,34,35,36}

Add edge to M step

Fall 2013 24 CSE373: Data Structures & Algorithms

P

{1,2,7,8,9,13,19,14,20,26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{15,16,21}

{18}

{25}

{28}

{31}

{22,23,24,29,30,32

 33,34,35,36}

Pick (19,20)

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

At the end

• Stop when P has one set

• Suppose green edges are already in M and black edges were

not yet picked

– Add all black edges to M

Fall 2013 25 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P

{1,2,3,4,5,6,7,… 36}

Other applications

• Maze-building is:

– Cute

– Homework 4 

– A surprising use of the union-find ADT

• Many other uses (which is why an ADT taught in CSE373):

– Road/network/graph connectivity (will see this again)

• “connected components” e.g., in social network

– Partition an image by connected-pixels-of-similar-color

– Type inference in programming languages

• Not as common as dictionaries, queues, and stacks, but

valuable because implementations are very fast, so when

applicable can provide big improvements

Fall 2013 26 CSE373: Data Structures & Algorithms

