CSE373: Data Structures & Algorithms
Lecture 9: Disjoint Sets & Union-Find

Dan Grossman
Fall 2013

The plan

 What are disjoint sets
— And how are they “the same thing” as equivalence relations

* The union-find ADT for disjoint sets

« Applications of union-find

Next lecture:

« Basic implementation of the ADT with “up trees”

« Optimizations that make the implementation much faster

Fall 2013 CSE373: Data Structures & Algorithms

Disjoint sets

A set is a collection of elements (no-repeats)

Two sets are disjoint if they have no elements in common

Example: {a, e, c} and {d, b} are disjoint

Example: {X, y, z} and {t, u, x} are not disjoint

Fall 2013 CSE373: Data Structures & Algorithms

Partitions

A partition P of a set S Is a set of sets {S1,S2,...,5Sn} such that
every element of S is in exactly one Si

Put another way:
- S US,U...U5 =S
— 1=]implies S, ;=Y (sets are disjoint with each other)

Example:
— Let S be {a,b,c,d,e}
— One patrtition: {a}, {d,e}, {b,c}
— Another partition: {a,b,c}, &, {d}, {e}
— A third: {a,b,c,d,e}
— Not a partition: {a,b,d}, {c,d,e}
— Not a partition of S: {a,b}, {e,c}

Fall 2013 CSE373: Data Structures & Algorithms

Binary relations

« S x Sisthe set of all pairs of elements of S
— Example: If S ={a,b,c}
then S x S ={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c), (c,a),(c,b),(c,c)}

 ADbinary relation Ron aset Sis any subset of S x S
— Write R(X,y) to mean (X,y) is “in the relation”
— (Unary, ternary, quaternary, ... relations defined similarly)

 Examples for S = people-in-this-room
— Sitting-next-to-each-other relation
— First-sitting-right-of-second relation
— Went-to-same-high-school relation
— Same-gender-relation
— First-is-younger-than-second relation

Fall 2013 CSE373: Data Structures & Algorithms 5

Properties of binary relations

A binary relation R over set S is reflexive means
R(a,a) forallain S

A binary relation R over set S is symmetric means
R(a,b) if and only if R(b,a) for all a,b In S

« A binary relation R over set S is transitive means
If R(a,b) and R(b,c) then R(a,c) for all a,b,cin S

 Examples for S = people-in-this-room
— Sitting-next-to-each-other relation
— First-sitting-right-of-second relation
— Went-to-same-high-school relation
— Same-gender-relation
— First-is-younger-than-second relation

Fall 2013 CSE373: Data Structures & Algorithms

Equivalence relations

« A Dbinary relation R is an equivalence relation if R is reflexive,
symmetric, and transitive

 Examples
— Same gender
— Connected roads in the world
— Graduated from same high school?

Fall 2013 CSE373: Data Structures & Algorithms

Punch-line

Every partition induces an equivalence relation
Every equivalence relation induces a partition

Suppose P={S1,S2,...,Sn} be a partition
— Define R(x,y) to mean x and y are in the same Si
* R Is an equivalence relation

Suppose R is an equivalence relation over S
— Consider a set of sets S1,S2,...,Sn where
(1) x and y are in the same Si if and only if R(X,y)
(2) Every x is in some Si
« This set of sets is a partition

Fall 2013 CSE373: Data Structures & Algorithms

Example

« LetSbe{a,b,c,d,e}
* One partition: {a,b,c}, {d}, {e}

 The corresponding equivalence relation:
(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e)

Fall 2013 CSE373: Data Structures & Algorithms

The plan

 What are disjoint sets
— And how are they “the same thing” as equivalence relations

« The union-find ADT for disjoint sets

« Applications of union-find

Next lecture:

« Basic implementation of the ADT with “up trees”

« Optimizations that make the implementation much faster

Fall 2013 CSE373: Data Structures & Algorithms

10

The operations

« Given an unchanging set S, create an initial partition of a set
— Typically each item in its own subset: {a}, {b}, {c}, ...

— Give each subset a “name” by choosing a representative
element

« Operation £ind takes an element of S and returns the
representative element of the subset it is in

« Operation union takes two subsets and (permanently) makes
one larger subset

— A different partition with one fewer set
— Affects result of subsequent £ind operations

— Choice of representative element up to implementation

Fall 2013 CSE373: Data Structures & Algorithms 11

Example

Let S ={1,2,3,4,5,6,7,8,9}

Let initial partition be (will highlight representative elements red)
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}
 union(2,5):
{1}, {2, 3}, {3} {4}, {6}, {7}, {8}, {9}
« find(4) =4, £ind(2) =2, £ind(5) =2
« union(4,6), union(2,7)
{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9}
« find(4) =6, £ind(2) = 2, £ind(5) =2
« union(2,6)

{1},{2, 4,5, 6, 7}, {3}, {8}, {9}

Fall 2013 CSE373: Data Structures & Algorithms 12

No other operations

All that can “happen” is sets get unioned
— No “un-union” or “create new set” or ...

As always: trade-offs — implementations will exploit this small
ADT

Surprisingly useful ADT: list of applications after one example
surprising one
— But not as common as dictionaries or priority queues

Fall 2013 CSE373: Data Structures & Algorithms

13

Example application: maze-building

Build a random maze by erasing edges

— Possible to get from anywhere to anywhere
* Including “start” to “finish”

— No loops possible without backtracking
» After a “bad turn” have to “undo”

Fall 2013 CSE373: Data Structures & Algorithms

14

Maze building

Pick start edge and end edge

Start

End

Fall 2013 CSE373: Data Structures & Algorithms

15

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get
from start to finish

Start

End

Fall 2013 CSE373: Data Structures & Algorithms 16

Problems with this approach

1. How can you tell when there is a path from start to finish?
— We do not really have an algorithm yet

2. We have cycles, which a “good” maze avoids
— Want one solution and no cycles

Start

N
.

Fall 2013 CSE373: Data Structures & Algorithms

17

Revised approach
« Consider edges in random order
« But only delete them if they introduce no cycles (how? TBD)

 When done, will have one way to get from any place to any
other place (assuming no backtracking)

Start

End

* Notice the funny-looking tree in red

Fall 2013 CSE373: Data Structures & Algorithms

18

Cells and edges

* Let’'s number each cell
— 36 total for 6 x 6

« An (internal) edge (X,y) is the line between cells x and y
— 60 total for 6x6: (1,2), (2,3), ..., (1,7), (2,8), ...

Stat 1|2 |3|4|5]6
7189|1011 |12
13|14 | 15|16 | 17 | 18
19 |20 (21 | 22| 23| 24
25| 26 | 27 | 28 | 29 | 30
31|32(33[34(35|36 End

Fall 2013 CSE373: Data Structures & Algorithms

The trick

« Partition the cells into disjoint sets: “are they connected”
— Initially every cell is in its own subset

» If an edge would connect two different subsets:

— then remove the edge and union the subsets

— else leave the edge because removing it makes a cycle

Start 1

5

6

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Fall 2013

Start 1

End

-

2
8

3

4

5

6

10

13
19

25

14
20
26

15
21

16

11
17

12

18

22

27

28

31

32

33

34

23
29

24
30

35 36 ENnd

CSE373: Data Structures & Algorithms

20

The algorithm

- P =disjoint sets of connected cells, initially each cell in its own
1-element set

« E = set of edges not yet processed, initially all (internal) edges
M = set of edges kept in maze (initially empty)

while P has more than one set {
— Pick a random edge (x,y) to remove from E

— U= find(X)
— v = £ind(y)
— Ifu==

then add (x,y) to M // same subset, do not create cycle
else union(u,Vv) // do not put edge in M, connect subsets

}

Add remaining members of E to M, then output M as the maze

Fall 2013 CSE373: Data Structures & Algorithms 21

Example step

Pick (8,14)

Start 1 2 | 3| 4

/7 8 9 10

13|14 |15 16

11
17

12

18

19 |20 | 21 | 22

25|26 27|28

31132 33 34

23
29

35 36 End

24
30

Fall 2013

P

{1,2,7,8,9,13,19}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{14,20,26,27)

{15,16,21}

{18}

{25}

{28}

{31}

[22,23,24,29,30,32
33,34,35,36)

CSE373: Data Structures & Algorithms 22

Example step

P
{P1,2,7,8,9,13,19} {1,2,7,8,9,13,19,14,20,26,27}
@8 3}
{4} {4}
{5) Find(8) = 7 {5)
{6 Find(14) =20 {6}
{10} {10}
{11,17} Union(7,20) {11,17}
{12} {12}
{14,20,26,27} ‘ {15,16,21}
{15,16,21} {18}
{18} {25}
{25} {28}
{28} {31}
{31} {22,23,24,29,30,32
{22,23,24,29,30,32 33,34,35,36}
33,34,35,36}

Fall 2013 CSE373: Data Structures & Algorithms 23

Add edge to M step

F)
{1,2,7,8,9,13,19,14,20,26,27}
Pick (19,20) %
{5}
Stat 1 2 | 3|4 |56 16}
— {10}
/8 9110|1112 {11,17}
13114 |15 16|17 |18 {12}
{15,16,21}
19|20 |21 |22 23|24 {18}
25126 27128|29 30 {25}
. {28}
31|32 33 34 35 36 End 31}

[22,23,24,29,30,32
33,34,35,36}

Fall 2013 CSE373: Data Structures & Algorithms 24

At the end

« Stop when P has one set

« Suppose green edges are already in M and black edges were
not yet picked
— Add all black edges to M

P
{1,2,3,4,5,6,7,... 36}

Startl1 2| 3|4 5 6
7 8 9 10 11|12
13|14 |15 16 17|18
192021 22 23|24
25 26 27 28|29 30
31|32 33 34 35 36 gng

Fall 2013 CSE373: Data Structures & Algorithms

Other applications

« Maze-building is:
— Cute
— Homework 4 ©
— A surprising use of the union-find ADT

* Many other uses (which is why an ADT taught in CSE373):

— Road/network/graph connectivity (will see this again)

« “connected components” e.g., in social network
— Partition an image by connected-pixels-of-similar-color
— Type inference in programming languages

 Not as common as dictionaries, queues, and stacks, but
valuable because implementations are very fast, so when
applicable can provide big improvements

Fall 2013 CSE373: Data Structures & Algorithms

26

