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The plan 

• What are disjoint sets 

– And how are they “the same thing” as equivalence relations 

 

• The union-find ADT for disjoint sets 

 

• Applications of union-find 

 

Next lecture: 

 

• Basic implementation of the ADT with “up trees” 

 

• Optimizations that make the implementation much faster 
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Disjoint sets 

• A set is a collection of elements (no-repeats)  

 

• Two sets are disjoint if they have no elements in common 

– S1  S2 =  

 

• Example: {a, e, c} and {d, b} are disjoint 

 

• Example: {x, y, z} and {t, u, x} are not disjoint 
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Partitions 

A partition P of a set S is a set of sets {S1,S2,…,Sn} such that 

every element of S is in exactly one Si 
 

Put another way: 

– S1  S2  . . .  Sk = S 

– i  j implies Si  Sj =   (sets are disjoint with each other) 
 

Example: 

– Let S be {a,b,c,d,e} 

– One partition: {a}, {d,e}, {b,c} 

– Another partition: {a,b,c}, , {d}, {e} 

– A third: {a,b,c,d,e} 

– Not a partition: {a,b,d}, {c,d,e} 

– Not a partition of S: {a,b}, {e,c} 
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Binary relations 

• S x S is the set of all pairs of elements of S  

– Example: If S = {a,b,c} 

    then S x S = {(a,a),(a,b),(a,c),(b,a),(b,b),(b,c), (c,a),(c,b),(c,c)} 
 

• A binary relation R on a set S is any subset of S x S 

– Write R(x,y) to mean (x,y) is “in the relation” 

– (Unary, ternary, quaternary, … relations defined similarly) 
 

• Examples for S = people-in-this-room 

– Sitting-next-to-each-other relation 

– First-sitting-right-of-second relation 

– Went-to-same-high-school relation 

– Same-gender-relation 

– First-is-younger-than-second relation 
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Properties of binary relations 

• A binary relation R over set S is reflexive means  

R(a,a) for all a in S 
 

• A binary relation R over set S is symmetric means  

R(a,b) if and only if R(b,a) for all a,b in S 
 

• A binary relation R over set S is transitive means  

   If R(a,b) and R(b,c) then R(a,c) for all a,b,c in S 
 

• Examples for S = people-in-this-room 

– Sitting-next-to-each-other relation 

– First-sitting-right-of-second relation 

– Went-to-same-high-school relation 

– Same-gender-relation 

– First-is-younger-than-second relation 
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Equivalence relations 

• A binary relation R is an equivalence relation if R is reflexive, 

symmetric, and transitive 

 

• Examples 

– Same gender 

– Connected roads in the world 

– Graduated from same high school?  

– … 
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Punch-line 

• Every partition induces an equivalence relation 

• Every equivalence relation induces a partition 

 

• Suppose P={S1,S2,…,Sn} be a partition 

– Define R(x,y) to mean x and y are in the same Si 

• R is an equivalence relation 

 

• Suppose R is an equivalence relation over S 

– Consider a set of sets S1,S2,…,Sn where  

(1) x and y are in the same Si if and only if R(x,y) 

(2) Every x is in some Si 

• This set of sets is a partition 
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Example 

• Let S be {a,b,c,d,e} 

 

• One partition: {a,b,c}, {d}, {e} 

 

• The corresponding equivalence relation: 

 (a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e) 
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The plan 

• What are disjoint sets 

– And how are they “the same thing” as equivalence relations 

 

• The union-find ADT for disjoint sets 

 

• Applications of union-find 

 

Next lecture: 

 

• Basic implementation of the ADT with “up trees” 

 

• Optimizations that make the implementation much faster 
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The operations 

• Given an unchanging set S, create an initial partition of a set 

– Typically each item in its own subset: {a}, {b}, {c}, … 

– Give each subset a “name” by choosing a representative 

element 

 

• Operation find takes an element of S and returns the 

representative element of the subset it is in 

 

• Operation union takes two subsets and (permanently) makes 

one larger subset 

– A different partition with one fewer set 

– Affects result of subsequent find operations 

– Choice of representative element up to implementation 

 
Fall 2013 11 CSE373: Data Structures & Algorithms 



Example 

• Let S = {1,2,3,4,5,6,7,8,9} 
 

• Let initial partition be (will highlight representative elements red) 

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9} 

• union(2,5): 

{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9} 

• find(4) = 4, find(2) = 2, find(5) = 2 

• union(4,6), union(2,7) 

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9} 

• find(4) = 6, find(2) = 2, find(5) = 2 

• union(2,6) 

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9} 

 

 

 

 

 

 

 

Fall 2013 12 CSE373: Data Structures & Algorithms 



No other operations 

• All that can “happen” is sets get unioned 

– No “un-union” or “create new set” or … 

 

• As always: trade-offs – implementations will exploit this small 

ADT 

 

• Surprisingly useful ADT: list of applications after one example 

surprising one 

– But not as common as dictionaries or priority queues 
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Example application: maze-building 

• Build a random maze by erasing edges 

 

 

 

 

 

 

 

 

– Possible to get from anywhere to anywhere 

• Including “start” to “finish” 

– No loops possible without backtracking 

• After a “bad turn” have to “undo” 
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Maze building 

Pick start edge and end edge 
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Start 

End 



Repeatedly pick random edges to delete 

One approach: just keep deleting random edges until you can get 

from start to finish 
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Start 

End 



Problems with this approach 

1. How can you tell when there is a path from start to finish? 

– We do not really have an algorithm yet 

 

2. We have cycles, which a “good” maze avoids 

– Want one solution and no cycles 
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Start 

End 



Revised approach 

• Consider edges in random order 
 

• But only delete them if they introduce no cycles (how? TBD) 
 

• When done, will have one way to get from any place to any 

other place (assuming no backtracking) 

 

 

 

 

 

 

 
 

• Notice the funny-looking tree in red 
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Start 

End 



Cells and edges 

• Let’s number each cell 

– 36 total for 6 x 6 

• An (internal) edge (x,y) is the line between cells x and y  

– 60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), … 
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Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 



The trick 

• Partition the cells into disjoint  sets: “are they connected” 

– Initially every cell is in its own subset 

• If an edge would connect two different subsets: 

– then remove the edge and union the subsets 

– else leave the edge because removing it makes a cycle 
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Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 



The algorithm 

• P = disjoint sets of connected cells, initially each cell in its own 

1-element set 

• E = set of edges not yet processed, initially all (internal) edges 

• M = set of edges kept in maze (initially empty) 
 

while P has more than one set { 

– Pick a random edge (x,y) to remove from E 

– u = find(x) 

– v = find(y) 

– if u==v 

    then add (x,y) to M // same subset, do not create cycle 

    else union(u,v) // do not put edge in M, connect subsets 

} 

Add remaining members of E to M, then output M as the maze 
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Example step 
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Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

Pick (8,14) 

P 

{1,2,7,8,9,13,19} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{14,20,26,27} 

{15,16,21} 

{18} 

{25} 

{28} 

{31} 

{22,23,24,29,30,32 

  33,34,35,36} 

 



Example step 
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P 

{1,2,7,8,9,13,19} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{14,20,26,27} 

{15,16,21} 

{18} 

{25} 

{28} 

{31} 

{22,23,24,29,30,32 

  33,34,35,36} 

 

Find(8) = 7 

Find(14) = 20 

Union(7,20) 

P 

{1,2,7,8,9,13,19,14,20,26,27} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{15,16,21} 

{18} 

{25} 

{28} 

{31} 

{22,23,24,29,30,32 

  33,34,35,36} 

 



Add edge to M step 
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P 

{1,2,7,8,9,13,19,14,20,26,27} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{15,16,21} 

{18} 

{25} 

{28} 

{31} 

{22,23,24,29,30,32 

  33,34,35,36} 

 

Pick (19,20) 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 



At the end 

• Stop when P has one set 

• Suppose green edges are already in M and black edges were 

not yet picked 

– Add all black edges to M 
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Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

P 

{1,2,3,4,5,6,7,… 36} 



Other applications 

• Maze-building is: 

– Cute 

– Homework 4  

– A surprising use of the union-find ADT 
 

• Many other uses (which is why an ADT taught in CSE373): 

– Road/network/graph connectivity (will see this again) 

• “connected components” e.g., in social network 

– Partition an image by connected-pixels-of-similar-color 

– Type inference in programming languages 
 

• Not as common as dictionaries, queues, and stacks, but 

valuable because implementations are very fast, so when 

applicable can provide big improvements 
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