Review

- Priority Queue ADT: insert comparable object, deleteMin
- Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
- $O(\text{height-of-tree}) = O(\log n)$ insert and deleteMin operations
 - insert: put at new last position in tree and percolate-up
 - deleteMin: remove root, put last element at root and percolate-down
- But: tracking the “last position” is painful and we can do better

Array Representation of Binary Trees

From node i:
- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Judging the array implementation

Plusses:
- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Minuses:
- Same might-by-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”

Pseudocode: insert

```java
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.
Pseudocode: deleteMin

```c
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown(1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

```c
int percolateDown(int hole, int val) {
    while(2*hole <= size) {
        left  = 2*hole;
        right = left + 1;
        if(arr[left] < arr[right] || right > size)
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```

Example

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
 - Change priority and percolate down

- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - **decreaseKey** with \(p = \infty \), then **deleteMin**

Build Heap

- Suppose you have \(n \) items to put in a new (empty) priority queue
 - Call this operation **buildHeap**

- \(n \) inserts works
 - Only choice if ADT doesn’t provide **buildHeap** explicitly
 - \(O(n \log n) \)

- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an \(O(n) \) algorithm called Floyd’s Method
 - Common issue in ADT design: how many specialized operations

Floyd’s Method

1. Use \(n \) items to make any complete tree you want
 - That is, put them in array indices 1,\ldots,n

2. Treat it as a heap and fix the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time
   ```c
   void buildHeap() {
       for(i = size/2; i>0; i--) {
           val = arr[i];
           hole = percolateDown(i,val);
           arr[hole] = val;
       }
   }
   ```

Example

- In tree form for readability
 - Purple for node not less than descendants
 - heap-order problem
 - Notice no leaves are purple
 - Check/fix each non-leaf bottom-up (6 steps here)
Step 1
- Happens to already be less than children (er, child)

Step 2
- Percolate down (notice that moves 1 up)

Step 3
- Another nothing-to-do step

Step 4
- Percolate down as necessary (steps 4a and 4b)

Step 5

Step 6
But is it right?

• “Seems to work”
 – Let’s prove it restores the heap property (correctness)
 – Then let’s prove its running time (efficiency)

Correctness

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Loop Invariant: For all j>i, arr[j] is less than its children
• True initially: If j > size/2, then j is a leaf
 – Otherwise its left child would be at position > size
• True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants
So after the loop finishes, all nodes are less than their children

Efficiency

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Easy argument: buildHeap is \(O(n \log n)\) where \(n\) is size
• size/2 loop iterations
• Each iteration does one percolateDown, each is \(O(\log n)\)

This is correct, but there is a more precise (“tighter”) analysis of the algorithm...

Efficiency

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Better argument: buildHeap is \(O(n)\) where \(n\) is size
• size/2 total loop iterations: \(O(n)\)
• 1/2 the loop iterations percolate at most 1 step
• 1/4 the loop iterations percolate at most 2 steps
• 1/8 the loop iterations percolate at most 3 steps
• \(((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 \) (page 4 of Weiss)
 – So at most 2(size/2) total percolate steps: \(O(n)\)

Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their own in \(O(n \log n)\) worst case
 – Worst case is inserting lower priority values later
• By providing a specialized operation internal to the data structure (with access to the internal data), we can do \(O(n)\) worst case
 – Intuition: Most data is near a leaf, so better to percolate down
• Can analyze this algorithm for:
 – Correctness:
 • Non-trivial inductive proof using loop invariant
 – Efficiency:
 • First analysis easily proved it was \(O(n \log n)\)
 • Tighter analysis shows same algorithm is \(O(n)\)

Other branching factors

• \(d\)-heaps: have \(d\) children instead of 2
 – Makes heaps shallower, useful for heaps too big for memory (or cache)
• Homework: Implement a 3-heap
 – Just have three children instead of 2
 – Still use an array with all positions from 1...heap-size used

<table>
<thead>
<tr>
<th>Index</th>
<th>Children Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3,4</td>
</tr>
<tr>
<td>2</td>
<td>5,6,7</td>
</tr>
<tr>
<td>3</td>
<td>8,9,10</td>
</tr>
<tr>
<td>4</td>
<td>11,12,13</td>
</tr>
<tr>
<td>5</td>
<td>14,15,16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
What we are skipping

• **merge**: given two priority queues, make one priority queue
 – How might you merge binary heaps:
 • If one heap is much smaller than the other?
 • If both are about the same size?
 – Different pointer-based data structures for priority queues support logarithmic time **merge** operation (impossible with binary heaps)
 • Leftist heaps, skew heaps, binomial queues
 • Worse constant factors
 • Trade-offs!