CSE373: Data Structures & Algorithms
Lecture 7: Binary Heaps, Continued

Dan Grossman
Fall 2013
Review

- Priority Queue ADT: insert comparable object, deleteMin
- Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
- $O(\text{height-of-tree})=O(\log n)$ insert and deleteMin operations
 - insert: put at new last position in tree and percolate-up
 - deleteMin: remove root, put last element at root and percolate-down
- But: tracking the “last position” is painful and we can do better
Array Representation of Binary Trees

From node i:
- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>
Man, you're being inconsistent with your array indices. Some are from one, some from zero.

Different tasks call for different conventions. To quote Stanford algorithms expert Donald Knuth,

"Who are you? How did you get in my house?"

http://xkcd.com/163
Judging the array implementation

Plusses:
- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Minuses:
- Same might-by-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
Pseudocode: insert

```c
void insert(int val) {
    if (size == arr.length - 1)
        resize();
    size++;
i = percolateUp(size, val);
    arr[i] = val;
}
```

```c
int percolateUp(int hole, int val) {
    while (hole > 1 &&
           val < arr[hole/2])
        arr[hole] = arr[hole/2];
        hole = hole / 2;
    return hole;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.

![Binary Tree Example](https://via.placeholder.com/150)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
</table>
Pseudocode: deleteMin

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```plaintext
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown(1, arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

```plaintext
int percolateDown(int hole, int val) {
    while(2*hole <= size) {
        left = 2*hole;
        right = left + 1;
        if(arr[left] < arr[right] || right > size)
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>80</td>
<td>40</td>
<td>60</td>
<td>85</td>
<td>99</td>
<td>700</td>
<td>50</td>
<td>85</td>
<td>99</td>
<td>700</td>
<td>50</td>
<td>85</td>
</tr>
</tbody>
</table>

Fall 2013

CSE373: Data Structures & Algorithms
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

```
0    1    2    3    4    5    6    7
```

```
``
Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by $p$
  - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by $p$
  - Change priority and percolate down

- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
  - **decreaseKey** with $p = \infty$, then **deleteMin**

Running time for all these operations?
Build Heap

• Suppose you have \( n \) items to put in a new (empty) priority queue
  – Call this operation \texttt{buildHeap}

• \( n \) \texttt{inserts} works
  – Only choice if ADT doesn’t provide \texttt{buildHeap} explicitly
  – \( O(n \log n) \)

• Why would an ADT provide this unnecessary operation?
  – Convenience
  – Efficiency: an \( O(n) \) algorithm called Floyd’s Method
  – Common issue in ADT design: how many specialized operations
Floyd’s Method

1. Use $n$ items to make any complete tree you want
   - That is, put them in array indices $1,\ldots,n$

2. Treat it as a heap and fix the heap-order property
   - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```plaintext
void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}
```
Example

• In tree form for readability
  – *Purple* for node not less than descendants
    • heap-order problem
  – Notice no leaves are *purple*
  – Check/fix each non-leaf bottom-up (6 steps here)
Example

- Happens to already be less than children (er, child)
Example

- Percolate down (notice that moves 1 up)
Example

Step 3

- Another nothing-to-do step
Example

- Percolate down as necessary (steps 4a and 4b)
Example

Step 5
Example

Step 6
But is it right?

• “Seems to work”
  – Let’s *prove* it restores the heap property (correctness)
  – Then let’s *prove* its running time (efficiency)

```c
void buildHeap() {
 for (i = size/2; i>0; i--)
 val = arr[i];
 hole = percolateDown(i, val);
 arr[hole] = val;
}
```
Correctness

**Loop Invariant:** For all $j > i$, $\text{arr}[j]$ is less than its children

- True initially: If $j > \text{size}/2$, then $j$ is a leaf
  - Otherwise its left child would be at position $> \text{size}$
- True after one more iteration: loop body and `percolateDown` make $\text{arr}[i]$ less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children

```plaintext
void buildHeap() {
 for (i = size/2; i > 0; i--) {
 val = arr[i];
 hole = percolateDown(i, val);
 arr[hole] = val;
 }
}
```
Efficiency

```c
void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}
```

Easy argument: `buildHeap` is \( O(n \log n) \) where \( n \) is `size`

- `size/2` loop iterations
- Each iteration does one `percolateDown`, each is \( O(\log n) \)

This is correct, but there is a more precise ("tighter") analysis of the algorithm…
Efficiency

Better argument: `buildHeap` is $O(n)$ where $n$ is `size`

- `size/2` total loop iterations: $O(n)$
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- \[((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2\]  (page 4 of Weiss)  
  - So at most 2 (`size/2`) `total` percolate steps: $O(n)$
Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their own in \(O(n \log n)\) worst case
  – Worst case is inserting lower priority values later

• By providing a specialized operation internal to the data structure (with access to the internal data), we can do \(O(n)\) worst case
  – Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
  – Correctness:
    • Non-trivial inductive proof using loop invariant
  – Efficiency:
    • First analysis easily proved it was \(O(n \log n)\)
    • Tighter analysis shows same algorithm is \(O(n)\)
Other branching factors

- $d$-heaps: have $d$ children instead of 2
  - Makes heaps shallower, useful for heaps too big for memory (or cache)

- Homework: Implement a 3-heap
  - Just have three children instead of 2
  - Still use an array with all positions from 1…heap-size used

<table>
<thead>
<tr>
<th>Index</th>
<th>Children Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3,4</td>
</tr>
<tr>
<td>2</td>
<td>5,6,7</td>
</tr>
<tr>
<td>3</td>
<td>8,9,10</td>
</tr>
<tr>
<td>4</td>
<td>11,12,13</td>
</tr>
<tr>
<td>5</td>
<td>14,15,16</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
What we are skipping

- **merge**: given two priority queues, make one priority queue
  - How might you merge binary heaps:
    - If one heap is much smaller than the other?
    - If both are about the same size?
  - Different pointer-based data structures for priority queues support logarithmic time **merge** operation (impossible with binary heaps)
    - Leftist heaps, skew heaps, binomial queues
    - Worse constant factors
    - Trade-offs!