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A new ADT: Priority Queue 

• Textbook Chapter 6 
– Nice to see a new and surprising data structure 

 
• A priority queue holds compare-able data 

– Like dictionaries and unlike stacks and queues, need to 
compare items 

• Given x and y, is x less than, equal to, or greater than y 
• Meaning of the ordering can depend on your data 
• Many data structures require this: dictionaries, sorting 

– Integers are comparable, so will use them in examples 
• But the priority queue ADT is much more general 
• Typically two fields, the priority and the data 
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Priorities 
• Each item has a “priority” 

– The lesser item is the one with the greater priority 
– So “priority 1” is more important than “priority 4” 
– (Just a convention, think “first is best”) 

 
 
 

• Operations:  
– insert 
– deleteMin 
– is_empty 

 
• Key property: deleteMin  returns and deletes the item with 

greatest priority (lowest priority value) 
– Can resolve ties arbitrarily 
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insert deleteMin 

        6        2 
  15        23 
          12   18 
45   3    7 

Example 

 insert x1 with priority 5 
 insert x2 with priority 3 
 insert x3 with priority 4 
 a = deleteMin // x2 
 b = deleteMin // x3 
 insert x4 with priority 2 
 insert x5 with priority 6 
 c = deleteMin // x4 
 d = deleteMin  // x1 
 
• Analogy: insert is like enqueue, deleteMin is like dequeue 

– But the whole point is to use priorities instead of FIFO 
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Applications 

Like all good ADTs, the priority queue arises often 
– Sometimes blatant, sometimes less obvious 

 
• Run multiple programs in the operating system 

– “critical” before “interactive” before “compute-intensive” 
– Maybe let users set priority level 

• Treat hospital patients in order of severity (or triage) 
• Select print jobs in order of decreasing length? 
• Forward network packets in order of urgency 
• Select most frequent symbols for data compression (cf. CSE143) 
• Sort (first insert all, then repeatedly deleteMin) 

– Much like Homework 1 uses a stack to implement reverse 
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More applications 

• “Greedy” algorithms 
– May see an example when we study graphs in a few weeks 

 

• Discrete event simulation (system simulation, virtual worlds, …) 
– Each event e happens at some time t, updating system state 

and generating new events e1, …, en at times t+t1, …, t+tn 
– Naïve approach: advance “clock” by 1 unit at a time and 

process any events that happen then 
– Better: 

• Pending events in a priority queue (priority = event time) 
• Repeatedly: deleteMin and then insert new events 
• Effectively “set clock ahead to next event” 
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Finding a good data structure 

• Will show an efficient, non-obvious data structure 
– But first let’s analyze some “obvious” ideas for n data items 
– All times worst-case; assume arrays “have room” 

 
data         insert algorithm / time      deleteMin algorithm / time 
unsorted array      
unsorted linked list 
sorted circular array 
sorted linked list 
binary search tree 
AVL tree 
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Need a good data structure! 

• Will show an efficient, non-obvious data structure for this ADT 
– But first let’s analyze some “obvious” ideas for n data items 
– All times worst-case; assume arrays “have room” 

 
data         insert algorithm / time      deleteMin algorithm / time 
unsorted array          add at end          O(1)      search                O(n) 
unsorted linked list     add at front         O(1)      search                O(n) 
sorted circular array   search / shift       O(n)         move front          O(1) 
sorted linked list          put in right place O(n)         remove at front   O(1) 
binary search tree      put in right place O(n) leftmost               O(n) 
AVL tree                     put in right place O(log n) leftmost       O(log n) 
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More on possibilities 

• If priorities are random, binary search tree will likely do better 
– O(log n) insert and O(log n) deleteMin on average 

 

• One more idea: if priorities are 0, 1, …, k can use array of  lists 
– insert: add to front of list at arr[priority], O(1) 
– deleteMin: remove from lowest non-empty list O(k) 

 

• We are about to see a data structure called a “binary heap” 
– O(log n) insert and O(log n) deleteMin worst-case 

• Possible because we don’t support unneeded 
operations; no need to maintain a full sort 

– Very good constant factors 
– If items arrive in random order, then insert is O(1) on 

average 
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Our data structure 
A binary min-heap (or just binary heap or just heap) is: 
• Structure property: A complete binary tree  
• Heap property: The priority of every (non-root) node is greater 

than the priority of its parent 
– Not a binary search tree 
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not a heap a heap 

So: 
• Where is the highest-priority item? 
• What is the height of a heap with n items? 

Operations: basic idea 

• findMin: return root.data 
• deleteMin:  

1. answer = root.data 
2. Move right-most node in last 

row to root to restore 
structure property 

3. “Percolate down” to restore 
heap property 

• insert: 
1. Put new node in next position 

on bottom row to restore 
structure property 

2. “Percolate up” to restore 
heap property 
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Overall strategy: 
• Preserve structure property 
• Break and restore heap 

property 

12 

DeleteMin 

3 4 

9 8 5 7 

10 6 9 11 

1. Delete (and later return) value at 
root node 
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2. Restore the Structure Property 

• We now have a “hole” at the root 
– Need to fill the hole with another 

value 
 

• When we are done, the tree will have 
one less node and must still be complete 
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3. Restore the Heap Property 

Percolate down:  
•  Keep comparing with both children  
•  Swap with lesser child and go down one level 
•  Done if both children are � item or reached a leaf node 
 
Why is this correct?  What is the run time? 
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DeleteMin: Run Time Analysis 

• Run time is O(height of heap) 
 

• A heap is a complete binary tree 
 

• Height of a complete binary tree of n nodes? 
– height = �� log2(n) � 

 
• Run time of deleteMin is O(log n) 
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Insert 

• Add a value to the tree 
 

• Afterwards, structure and heap 
properties must still be correct 
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Insert: Maintain the Structure Property 

• There is only one valid tree shape after 
we add one more node 
 

• So put our new data there and then 
focus on restoring the heap property 
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Maintain the heap property 
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1 

Percolate up: 
•  Put new data in new location 
•  If parent larger, swap with parent, and continue 
•  Done if parent � item or reached root 
 
Why is this correct?  What is the run time? 
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Insert: Run Time Analysis 

• Like deleteMin, worst-case time proportional to tree height 
– O(log n) 

 

• But… deleteMin needs the “last used” complete-tree position 
and insert needs the “next to use” complete-tree position 
– If “keep a reference to there” then insert and deleteMin 

have to adjust that reference: O(log n) in worst case 
– Could calculate how to find it in O(log n) from the root given 

the size of the heap 
• But it’s not easy 
• And then insert is always O(log n), promised O(1) on 

average (assuming random arrival of items) 
 

• There’s a “trick”: don’t represent complete trees with explicit edges! 
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