
CSE373: Data Structures & Algorithms

Lecture 6: Priority Queues

Dan Grossman
Fall 2013

A new ADT: Priority Queue

• Textbook Chapter 6
– Nice to see a new and surprising data structure

• A priority queue holds compare-able data

– Like dictionaries and unlike stacks and queues, need to
compare items

• Given x and y, is x less than, equal to, or greater than y
• Meaning of the ordering can depend on your data
• Many data structures require this: dictionaries, sorting

– Integers are comparable, so will use them in examples
• But the priority queue ADT is much more general
• Typically two fields, the priority and the data

Fall 2013 2 CSE373: Data Structures & Algorithms

Priorities
• Each item has a “priority”

– The lesser item is the one with the greater priority
– So “priority 1” is more important than “priority 4”
– (Just a convention, think “first is best”)

• Operations:
– insert
– deleteMin
– is_empty

• Key property: deleteMin returns and deletes the item with

greatest priority (lowest priority value)
– Can resolve ties arbitrarily

Fall 2013 3 CSE373: Data Structures & Algorithms

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

Example

 insert x1 with priority 5
 insert x2 with priority 3
 insert x3 with priority 4
 a = deleteMin // x2
 b = deleteMin // x3
 insert x4 with priority 2
 insert x5 with priority 6
 c = deleteMin // x4
 d = deleteMin // x1

• Analogy: insert is like enqueue, deleteMin is like dequeue

– But the whole point is to use priorities instead of FIFO

Fall 2013 4 CSE373: Data Structures & Algorithms

Applications

Like all good ADTs, the priority queue arises often
– Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system

– “critical” before “interactive” before “compute-intensive”
– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)
• Select print jobs in order of decreasing length?
• Forward network packets in order of urgency
• Select most frequent symbols for data compression (cf. CSE143)
• Sort (first insert all, then repeatedly deleteMin)

– Much like Homework 1 uses a stack to implement reverse

Fall 2013 5 CSE373: Data Structures & Algorithms

More applications

• “Greedy” algorithms
– May see an example when we study graphs in a few weeks

• Discrete event simulation (system simulation, virtual worlds, …)
– Each event e happens at some time t, updating system state

and generating new events e1, …, en at times t+t1, …, t+tn
– Naïve approach: advance “clock” by 1 unit at a time and

process any events that happen then
– Better:

• Pending events in a priority queue (priority = event time)
• Repeatedly: deleteMin and then insert new events
• Effectively “set clock ahead to next event”

Fall 2013 6 CSE373: Data Structures & Algorithms

Finding a good data structure

• Will show an efficient, non-obvious data structure
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array
unsorted linked list
sorted circular array
sorted linked list
binary search tree
AVL tree

Fall 2013 7 CSE373: Data Structures & Algorithms

Need a good data structure!

• Will show an efficient, non-obvious data structure for this ADT
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array add at end O(1) search O(n)
unsorted linked list add at front O(1) search O(n)
sorted circular array search / shift O(n) move front O(1)
sorted linked list put in right place O(n) remove at front O(1)
binary search tree put in right place O(n) leftmost O(n)
AVL tree put in right place O(log n) leftmost O(log n)

Fall 2013 8 CSE373: Data Structures & Algorithms

More on possibilities

• If priorities are random, binary search tree will likely do better
– O(log n) insert and O(log n) deleteMin on average

• One more idea: if priorities are 0, 1, …, k can use array of lists
– insert: add to front of list at arr[priority], O(1)
– deleteMin: remove from lowest non-empty list O(k)

• We are about to see a data structure called a “binary heap”
– O(log n) insert and O(log n) deleteMin worst-case

• Possible because we don’t support unneeded
operations; no need to maintain a full sort

– Very good constant factors
– If items arrive in random order, then insert is O(1) on

average
 Fall 2013 9 CSE373: Data Structures & Algorithms

Our data structure
A binary min-heap (or just binary heap or just heap) is:
• Structure property: A complete binary tree
• Heap property: The priority of every (non-root) node is greater

than the priority of its parent
– Not a binary search tree

Fall 2013 10 CSE373: Data Structures & Algorithms

15 30

80 20

10

99 60 40

80 20

10

50 700

85

not a heap a heap

So:
• Where is the highest-priority item?
• What is the height of a heap with n items?

Operations: basic idea

• findMin: return root.data
• deleteMin:

1. answer = root.data
2. Move right-most node in last

row to root to restore
structure property

3. “Percolate down” to restore
heap property

• insert:
1. Put new node in next position

on bottom row to restore
structure property

2. “Percolate up” to restore
heap property
 Fall 2013 11 CSE373: Data Structures & Algorithms

99 60 40

80 20

10

50 700

85

Overall strategy:
• Preserve structure property
• Break and restore heap

property

12

DeleteMin

3 4

9 8 5 7

10 6 9 11

1. Delete (and later return) value at
root node

Fall 2013 CSE373: Data Structures & Algorithms

13

2. Restore the Structure Property

• We now have a “hole” at the root
– Need to fill the hole with another

value

• When we are done, the tree will have
one less node and must still be complete

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11
Fall 2013 CSE373: Data Structures & Algorithms 14

3. Restore the Heap Property

Percolate down:
• Keep comparing with both children
• Swap with lesser child and go down one level
• Done if both children are � item or reached a leaf node

Why is this correct? What is the run time?

3 4

9 8 5 7

10

6 9 11

4

9 8 5 7

10

6 9 11

3

8 4

9 10 5 7

6 9 11

3
?

?

Fall 2013 CSE373: Data Structures & Algorithms

15

DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?
– height = �� log2(n) �

• Run time of deleteMin is O(log n)

Fall 2013 CSE373: Data Structures & Algorithms 16

Insert

• Add a value to the tree

• Afterwards, structure and heap
properties must still be correct

 8 4

9 10 5 7

6 9 11

1

2

Fall 2013
CSE373: Data Structures & Algorithms

17

Insert: Maintain the Structure Property

• There is only one valid tree shape after
we add one more node

• So put our new data there and then
focus on restoring the heap property

8 4

9 10 5 7

6 9 11

1

2

Fall 2013 CSE373: Data Structures & Algorithms 18

Maintain the heap property

2

8 4

9 10 5 7

6 9 11

1

Percolate up:
• Put new data in new location
• If parent larger, swap with parent, and continue
• Done if parent � item or reached root

Why is this correct? What is the run time?

?

2
5

8 4

9 10 7

6 9 11

1

?

2

5

8

9 10 4 7

6 9 11

1 ?

Fall 2013 CSE373: Data Structures & Algorithms

19

Insert: Run Time Analysis

• Like deleteMin, worst-case time proportional to tree height
– O(log n)

• But… deleteMin needs the “last used” complete-tree position
and insert needs the “next to use” complete-tree position
– If “keep a reference to there” then insert and deleteMin

have to adjust that reference: O(log n) in worst case
– Could calculate how to find it in O(log n) from the root given

the size of the heap
• But it’s not easy
• And then insert is always O(log n), promised O(1) on

average (assuming random arrival of items)

• There’s a “trick”: don’t represent complete trees with explicit edges!

Fall 2013 CSE373: Data Structures & Algorithms

