A new ADT: Priority Queue

- Textbook Chapter 6
 - Nice to see a new and surprising data structure

- A priority queue holds compare-able data
 - Like dictionaries and unlike stacks and queues, need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Many data structures require this: dictionaries, sorting
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the priority and the data

Priorities

- Each item has a “priority”
 - The lesser item is the one with the greater priority
 - So “priority 1” is more important than “priority 4”
 - (Just a convention, think “first is best”)

- Operations:
 - insert
 - deleteMin
 - is_empty

- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

Example

- insert x_1 with priority 5
- insert x_2 with priority 3
- insert x_3 with priority 4
- $a = \text{deleteMin} // x_2$
- $b = \text{deleteMin} // x_3$
- insert x_4 with priority 2
- insert x_5 with priority 6
- $c = \text{deleteMin} // x_4$
- $d = \text{deleteMin} // x_1$

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Applications

Like all good ADTs, the priority queue arises often
- Sometimes blatant, sometimes less obvious

- Run multiple programs in the operating system
 - “critical” before “interactive” before “compute-intensive”
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression (cf. CSE143)
- Sort (first insert all, then repeatedly deleteMin)
 - Much like Homework 1 uses a stack to implement reverse

More applications

- “Greedy” algorithms
 - May see an example when we study graphs in a few weeks
- Discrete event simulation (system simulation, virtual worlds, …)
 - Each event e happens at some time t, updating system state and generating new events e_1, …, e_n at times $t+t_1$, …, $t+t_n$
 - Naïve approach: advance “clock” by 1 unit at a time and process any events that happen then
 - Better:
 - Pending events in a priority queue (priority = event time)
 - Repeatedly: deleteMin and then insert new events
 - Effectively “set clock ahead to next event”
Finding a good data structure

- Will show an efficient, non-obvious data structure
 - But first let's analyze some "obvious" ideas for n data items
 - All times worst-case; assume arrays "have room"

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unsorted linked list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorted circular array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorted linked list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL tree</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall 2013 7 CSE373: Data Structures & Algorithms

Need a good data structure!

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for n data items
 - All times worst-case; assume arrays "have room"

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end O(1)</td>
<td>search O(n)</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front O(1)</td>
<td>search O(n)</td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift O(n)</td>
<td>move front O(1)</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place O(n)</td>
<td>remove at front O(1)</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place O(n)</td>
<td>leftmost O(n)</td>
</tr>
<tr>
<td>AVL tree</td>
<td>put in right place O(log n) leftmost O(log n)</td>
<td></td>
</tr>
</tbody>
</table>

Fall 2013 8 CSE373: Data Structures & Algorithms

More on possibilities

- If priorities are random, binary search tree will likely do better
 - O(log n) insert and O(log n) deleteMin on average
- One more idea: if priorities are 0, 1, ..., k can use array of lists
 - insert: add to front of list at arr[priority], O(1)
 - deleteMin: remove from lowest non-empty list O(k)
- We are about to see a data structure called a "binary heap"
 - O(log n) insert and O(log n) deleteMin worst-case
 - Possible because we don’t support unneeded operations; no need to maintain a full sort
 - Very good constant factors
 - If items arrive in random order, then insert is O(1) on average

Fall 2013 9 CSE373: Data Structures & Algorithms

Our data structure

A binary min-heap (or just binary heap or just heap) is:

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is greater than the priority of its parent
 - Not a binary search tree

not a heap

\[
\begin{array}{c}
20 \\
30 \\
10 \\
\end{array}
\]

a heap

\[
\begin{array}{c}
80 \\
85 \\
90 \\
\end{array}
\]

not a heap

\[
\begin{array}{c}
20 \\
30 \\
10 \\
\end{array}
\]

So:

- Where is the highest-priority item?
- What is the height of a heap with n items?

Operations: basic idea

- findMin: return root.data
- deleteMin:
 1. answer = root.data
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
- insert:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
- Preserve structure property
- Break and restore heap property

DeleteMin

1. Delete (and later return) value at root node
2. Restore the Structure Property

- We now have a “hole” at the root
 - Need to fill the hole with another value
- When we are done, the tree will have one less node and must still be complete

3. Restore the Heap Property

Percolate down:
- Keep comparing with both children
- Swap with lesser child and go down one level
- Done if both children are item or reached a leaf node

Why is this correct? What is the run time?

Fall 2013 CSE373: Data Structures & Algorithms

DeleteMin: Run Time Analysis

- Run time is $O(\text{height of heap})$
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 - $\text{height} = \lceil \log_2(n) \rceil$
- Run time of deleteMin is $O(\log n)$

Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct

Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property

Maintain the heap property

Percolate up:
- Put new data in new location
- If parent larger, swap with parent, and continue
- Done if parent \leq item or reached root

Why is this correct? What is the run time?
Insert: Run Time Analysis

- Like `deleteMin`, worst-case time proportional to tree height
 - $O(\log n)$

- But... `deleteMin` needs the “last used” complete-tree position and `insert` needs the “next to use” complete-tree position
 - If “keep a reference to there” then `insert` and `deleteMin` have to adjust that reference: $O(\log n)$ in worst case
 - Could calculate how to find it in $O(\log n)$ from the root given the size of the heap
 - But it’s not easy
 - And then `insert` is always $O(\log n)$, promised $O(1)$ on average (assuming random arrival of items)

- There’s a “trick”: don’t represent complete trees with explicit edges!