CSE373: Data Structures & Algorithms

Lecture 4: Dictionaries; Binary Search Trees

Dan Grossman
Fall 2013

Where we are

Studying the absolutely essential ADTs of computer science and
classic data structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty, ...

2. Queue: enqueue, dequeue, isEmpty, ...
Next:

3. Dictionary (a.k.a. Map): associate keys with values
— Extremely common

Fall 2013 CSE373: Data Structures & Algorithms

The Dictionary (a.k.a. Map) ADT

e Data: :....a:
— set of (key, value) pairs : Djzgn
— keys must be comparable * Grossman
insert(djg,) :
- Operations: .
— insert (key,value) ljames
~ find (key) : Lebron
. James
— delete (key) _ .
- ~ find(miley)
Miley, Cyrus, ...
miley
Will tend to emphasize the keys; : Miley
don’t forget about the stored values . Cyrus

Fall 2013 CSE373: Data Structures & Algorithms 3

Comparison: The Set ADT

The Set ADT is like a Dictionary without any values
— A key Is present or not (no repeats)

For £find, insert, delete, there is little difference
— In dictionary, values are “just along for the ride”
— So same data-structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold

— union, intersection, 1s_subset

— Notice these are binary operators on sets

Fall 2013 CSE373: Data Structures & Algorithms 4

Dictionary data structures

There are many good data structures for (large) dictionaries

1. AVL trees
— Binary search trees with guaranteed balancing

2. B-Trees
— Also always balanced, but different and shallower
— B!=Binary; B-Trees generally have large branching factor

3. Hashtables
— Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

But first some applications and less efficient implementations...

Fall 2013 CSE373: Data Structures & Algorithms

A Modest Few Uses

Any time you want to store information according to some key and
be able to retrieve it efficiently

— Lots of programs do that!

« Search: iInverted indexes, phone directories, ...
* Networks: router tables

« Operating systems: page tables

« Compilers: symbol tables

« Databases: dictionaries with other nice properties
« Biology: genome maps

Fall 2013 CSE373: Data Structures & Algorithms

Simple implementations

For dictionary with n key/value pairs

insert find delete

* Unsorted linked-list
* Unsorted array

« Sorted linked list

e Sorted array

We’'ll see a Binary Search Tree (BST) probably does better, but
not in the worst case unless we keep it balanced

Fall 2013 CSE373: Data Structures & Algorithms

Simple implementations

For dictionary with n key/value pairs

insert find delete
* Unsorted linked-list O(1)* O(n) O(n)
« Unsorted array O(1)* O(n) O(n)
« Sorted linked list O(n) O(n) O(n)
e Sorted array O(n) O(logn) O(n)

* Unless we need to check for duplicates

We’'ll see a Binary Search Tree (BST) probably does better, but
not in the worst case unless we keep it balanced

Fall 2013 CSE373: Data Structures & Algorithms

Lazy Deletion

10

12

24

30

41

42

44

45

50

v

X

v

v

v

v

X

v

v

A general technique for making delete as fast as £ind:

— Instead of actually removing the item just mark it deleted

Plusses:

— Simpler

— Can do removals later in batches
— If re-added soon thereafter, just unmark the deletion

Minuses:

Extra space for the “is-it-deleted” flag
Data structure full of deleted nodes wastes space

Fall 2013

find O(1og m) time where m is data-structure size (okay)

May complicate other operations

CSE373: Data Structures & Algorithms

Tree terms (review?)

root(tree) depth(node)
leaves(tree) height(tree)
children(node) degree(node)
parent(node) branching factor(tree)
siblings(node)

ancestors(node)

descendents(node)

subtree(node)

Fall 2013 CSE373: Data Structures & Algorithms 10

Some tree terms (mostly review)

 There are many kinds of trees
— Every binary tree is a tree
— Every list is kind of a tree (think of “next” as the one child)

« There are many kinds of binary trees
— Every binary search tree is a binary tree
— Later: A binary heap is a different kind of binary tree

« A tree can be balanced or not
— A balanced tree with n nodes has a height of O(1og n)

— Different tree data structures have different “balance
conditions” to achieve this

Fall 2013 CSE373: Data Structures & Algorithms

11

Kinds of trees

Certain terms define trees with specific structure

« Binary tree: Each node has at most 2 children (branching factor 2)
* n-ary tree: Each node has at most n children (branching factor n)
» Perfect tree: Each row completely full

« Complete tree: Each row completely full except maybe the bottom
row, which is filled from left to right

LS L0

What is the height of a perfect binary tree with n nodes?

A complete binary tree?
Fall 2013 CSE373: Data Structures & Algorithms 12

Binary Trees

* Binary tree is empty or
— Aroot (with data)
— A left subtree (may be empty)
— A right subtree (may be empty)

* Representation: G

Data @

left | right
pointer | pointer

« For a dictionary, data will include a
key and a value

Fall 2013 CSE373: Data Structures & Algorithms

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
— max # of leaves:

— max # of nodes:
— min # of leaves:

— min # of nodes:

Fall 2013 CSE373: Data Structures & Algorithms

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
— max # of leaves: 2h

— max # of nodes: 2(h+1) _1
— min # of leaves: 1

— min # of nodes: h+1

For n nodes, we cannot do better than O(1og n) height,
and we want to avoid O(n) height

Fall 2013 CSE373: Data Structures & Algorithms 15

Calculating height

What is the height of a tree with root root?

int treeHeight (Node root) {

??2?

Fall 2013 CSE373: Data Structures & Algorithms

16

Calculating height

What is the height of a tree with root root?

int treeHeight (Node root) {
i1f (root == null)
return -1;
return 1 + max(treeHeight (root.left),
treeHeight (root.right)) ;

Running time for tree with n nodes: O(n) — single pass over tree

Note: non-recursive is painful — need your own stack of pending
nodes; much easier to use recursion’s call stack

Fall 2013 CSE373: Data Structures & Algorithms 17

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

 Pre-order: root, left subtree, right subtree o
« In-order: left subtree, root, right subtree ° 6
« Post-order: left subtree, right subtree, root @ @

(an expression tree)

Fall 2013 CSE373: Data Structures & Algorithms 18

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

 Pre-order: root, left subtree, right subtree o
+*245

« In-order: left subtree, root, right subtree ° 6
2*4+5

« Post-order: left subtree, right subtree, root @ @
24*5+

(an expression tree)

Fall 2013 CSE373: Data Structures & Algorithms 19

More on traversals

void inOrderTraversal (Node t) {
if(t '= null) {
inOrderTraversal (t.left) ;
process (t.element) ;
inOrderTraversal (t.right) ;

}
}

Sometimes order doesn’t matter
« Example: sum all elements
Sometimes order matters
« Example: print tree with parent above
iIndented children (pre-order)

« Example: evaluate an expression tree
(post-order)

Fall 2013 CSE373: Data Structures & Algorithms

20

Binary Search Tree

« Structure property (“binary”)
— Each node has < 2 children
— Result: keeps operations simple @

« QOrder property (5) (17

— All keys in left subtree smaller
than node’s key

— All keys in right subtree larger 9 @ @ @

than node’s key

— Result: easy to find any given key @ 0 @ @
13

Fall 2013 CSE373: Data Structures & Algorithms 21

Are these BSTs?

Fall 2013 CSE373: Data Structures & Algorithms 22

Are these BSTs?

Fall 2013 CSE373: Data Structures & Algorithms 23

Find in BST, Recursive

@ Data find (Key key, Node root) {
if (root == null)

return null;
e @ if (key < root.key)
return find(key,root.left);
if (key > root.key)

9 @ @ return find(key,root.right) ;
return root.data;

Fall 2013 CSE373: Data Structures & Algorithms 24

Find in BST, lterative

DWW W

Data find (Key key, Node root) {
while (root '= null
&& root.key !'= key) {
if (key < root.key)
root = root.left;
else (key > root.key)
root = root.right;
}
if (root == null)
return null;
return root.data;

}

Fall 2013 CSE373: Data Structures & Algorithms 25

Other “Finding” Operations

* Find minimum node
— “the liberal algorithm”
* Find maximum node
— “the conservative algorithm”

« Find predecessor of a non-leaf
* Find successor of a non-leaf

« Find predecessor of a leaf

« Find successor of a leaf

Fall 2013 CSE373: Data Structures & Algorithms 26

Insert in BST

insert (13)
insert (8)
insert (31)

(New) insertions happen
only at leaves — easy!

Fall 2013 CSE373: Data Structures & Algorithms 27

Deletion in BST

Fall 2013

Why might deletion be harder than insertion?

CSE373: Data Structures & Algorithms

28

Deletion

 Removing an item disrupts the tree structure

« Basic idea: £ind the node to be removed, then
“fix” the tree so that it is still a binary search tree

 Three cases:
— Node has no children (leaf)
— Node has one child
— Node has two children

Fall 2013 CSE373: Data Structures & Algorithms

29

Deletion — The Leaf Case

delete (17)

Fall 2013 CSE373: Data Structures & Algorithms

30

Deletion — The One Child Case

delete (15)

Fall 2013 CSE373: Data Structures & Algorithms

31

Deletion — The Two Child Case

delete (5)

What can we replace 5 with?

Fall 2013 CSE373: Data Structures & Algorithms

32

Deletion — The Two Child Case

ldea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
e successor fromright subtree: £indMin (node.right)
* predecessor from left subtree: findMax (node.left)

— These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
« Leaf or one child case — easy cases of delete!

Fall 2013 CSE373: Data Structures & Algorithms 33

Lazy Deletion

« Lazy deletion can work well for a BST
— Simpler
— Can do “real deletions” later as a batch
— Some inserts can just “undelete” a tree node

e But

— Can waste space and slow down find operations
— Make some operations more complicated:

Fall 2013

« How would you change £indMin and £indMax?

CSE373: Data Structures & Algorithms

34

BuildTree for BST

Let’'s consider buildTree
— Insert all, starting from an empty tree

Insert keys 1, 2, 3,4, 5,6, 7, 8,9 into an empty BST

— If inserted in given order,
what is the tree?
O(n?)
— What big-O runtime for Not a happy place
this kind of sorted input?

— Is inserting in the reverse order
any better?

Fall 2013 CSE373: Data Structures & Algorithms

35

BuildTree for BST
 Insertkeysl, 2, 3,4,5,6, 7,8, 9Iinto an empty BST

 What we if could somehow re-arrange them
— maedian first, then left median, right median, etc.
- 53,7,2,1,4,8,6,9

— What tree does that give us?

— What big-O runtime?
O(n log n), definitely better

Fall 2013 CSE373: Data Structures & Algorithms 36

Unbalanced BST

« Balancing a tree at build time is insufficient, as sequences of
operations can eventually transform that carefully balanced tree

Into the dreaded list

« At that point, everything is
O(n) and nobody is happy
— find
— insert
— delete

Fall 2013 CSE373: Data Structures & Algorithms 37

Balanced BST

Observation

. BST: the shallower the better!

« For a BST with n nodes inserted in arbitrary order
— Average height is O(1og n) — see text for proof
— Worst case height is O(n)

« Simple cases, such as inserting in key order, lead to
the worst-case scenario

Solution: Require a Balance Condition that

1. Ensures depthis always O(logn) - strong enough!
2. Is efficient to maintain — not too strong!

Fall 2013 CSE373: Data Structures & Algorithms 38

Potential Balance Conditions

Left and right subtrees of the root
have equal number of nodes

Too weak!
Height mismatch example: é

Left and right subtrees of the root
have equal height

Too weak!
Double chain example:

Fall 2013 CSE373: Data Structures & Algorithms

39

Potential Balance Conditions

Left and right subtrees of every node
have equal number of nodes

Too strong!
Only perfect trees (2" — 1 nodes) é

Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2" — 1 nodes)

Fall 2013 CSE373: Data Structures & Algorithms

40

The AVL Balance Condition

Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) — height(node.right)
AVL property: for every node x, —1<balance(x)<1

* Ensures small depth

— Will prove this by showing that an AVL tree of height
h must have a number of nodes exponential in h

« Efficient to maintain
— Using single and double rotations

Fall 2013 CSE373: Data Structures & Algorithms

41

