CSE373: Data Structures and Algorithms

Lecture 3: Asymptotic Analysis

Dan Grossman
Fall 2013

Gauging performance

* Uh, why not just run the program and time it

— Too much variability, not reliable or portable:
* Hardware: processor(s), memory, etc.
» OS, Java version, libraries, drivers
» Other programs running
» Implementation dependent

— Choice of input
» Testing (inexhaustive) may miss worst-case input

» Timing does not explain relative timing among inputs
(what happens when n doubles in size)

» Often want to evaluate an algorithm, not an implementation
— Even before creating the implementation (“coding it up”)

Fall 2013 CSE373: Data Structure & Algorithms

Comparing algorithms

When is one algorithm (not implementation) better than another?
— Various possible answers (clarity, security, ...)

— But a big one is performance: for sufficiently large inputs,
runs in less time (our focus) or less space

Large inputs because probably any algorithm is “plenty good” for
small inputs (if n is 10, probably anything is fast)

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time
— Avrithmetic (fixed-width)
— Assignment
— Access one Java field or array index
- Etc.
(This is an approximation of reality: a very useful “lie”.)

Answer will be independent of CPU speed, programming language, Consecutive statements Sum of times

coding tricks, etc. Conditionals Time of test plus slower branch

. . o Loops Sum of iterations

Answer is general and rigorous, complementary to “coding it up . i

and timing it on some test cases” Calls Time of call’s body

Recursion Solve recurrence equation

Fall 2013 CSE373: Data Structure & Algorithms 3 Fall 2013 CSE373: Data Structure & Algorithms
Example Linear search

BRBEEEREE

Find an integer in a sorted array

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k) {
?2?2?

}

Fall 2013 CSE373: Data Structure & Algorithms 5

BRBREEREE

Find an integer in a sorted array

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
for(int i=0; i < arr.length; ++i)
if (arr[i] == k)

A SEES Best case: 6ish steps = O(1)
return false;

} Worst case: 6ish*(arr.length)
= O(arr.length)

Fall 2013 CSE373: Data Structure & Algorithms

Binary search

BB EEERETE

Find an integer in a sorted array
— Can also be done non-recursively but “doesn’t matter” here

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k) {
return help(arr,k,0,arr.length) ;

}

boolean help(int[]arr, int k, int lo, int hi) {
int mid = (hi+lo)/2; // i.e., lo+(hi-1lo0)/2
if (lo==hi) return false;
if (arr[mid]==k) return true;
if (arr[mid]< k) return help(arr,k,mid+1l,hi);
else return help(arr,k,lo,mid) ;

}

Fall 2013 CSE373: Data Structure & Algorithms 7

Binary search

Best case: 8ish steps = O(1)

Worst case: T(n) = 10ish + T(n/2) where nis hi-1lo
* O(log n)where nis array.length
» Solve recurrence equation to know that...

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k) {
return help(arr,k,0,arr.length) ;

}

boolean help(int[]arr, int k, int lo, int hi) {
int mid = (hi+lo)/2;
if (lo==hi) return false;
if (arr[mid]==k) return true;
if (arr[mid]< k) return help(arr,k,mid+1l,hi) ;
else return help(arr,k,lo,mid) ;

Fall 2013 CSE373: Data Structure & Algorithms 8

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
- T(n)=10+ T(n/2) T(1)=8
2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.
— T(n) =10+ 10+ T(n/4)
=10+10+ 10 + T(n/8)

=10k + T(n/(2¥))
3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case
— nl(2¥) =1 means n = 2% means k = log, n
— So T(n)=101log, n + 8 (get to base case and do it)
— So T(n)is O(log n)

Fall 2013 CSE373: Data Structure & Algorithms 9

Ignoring constant factors

* So binary search is O(1og n) and linear is O(n)
— But which is faster?

* Could depend on constant factors
— How many assignments, additions, etc. for each n
« E.g. T(n) = 5,000,000n vs. T(n) = 5n?
— And could depend on size of n
* E.g. T(n) =5,000,000 +logn vs. T(n)=10+n
« But there exists some n, such that for all n > n, binary search wins

» Let’s play with a couple plots to get some intuition...

Fall 2013 CSE373: Data Structure & Algorithms 10

o

Example

* Let's try to “help” linear search

Run it on a computer 100x as fast (say 2010 model vs. 1990)
— Use a new compiler/language that is 3x as fast
— Be a clever programmer to eliminate half the work
— So doing each iteration is 600x as fast as in binary search

» Note: 600x still helpful for problems without logarithmic algorithms!

Fall 2013 CSE373: Data Structure & Algorithms 11

Another example: sum array
Two “obviously” linear algorithms: T(n) = O(1) + T(n-1)

int sum(int[] arr) {

Iterative: int ans = 0;
for (int i=0; i<arr.length; ++i)
ans += arr[i];
return ans;
}
iva: int sum(int arr
Recursive: . returé he{;(arr{é);
— Recurrenceis 3
k+k +...+Kk int help(int[]arr,int i) {
. if (i==arr.length)
for n times return 0;
return arr[i] + help(arr,i+l);
}
Fall 2013 CSE373: Data Structure & Algorithms 12

What about a binary version?

int sum(int[] arr){
return help(arr,0,arr.length) ;

}
int help(int[] arr, int lo, int hi) {
if (lo==hi) return O;
if (lo==hi-1) return arr[lo];
int mid = (hi+lo)/2;
return help(arr,lo,mid) + help(arr,mid, hi) ;

}

Recurrence is T(n) = O(1) + 2T(n/2)
- 1+2+4+8+ ... forlogntimes
— 2(legn) — 1 which is proportional to n (definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than O(n) — have to read whole array

Fall 2013 CSE373: Data Structure & Algorithms 13

Parallelism teaser

» But suppose we could do two recursive calls at the same time
— Like having a friend do half the work for you!
int sum(int[]arr) {
return help(arr,0,arr.length) ;

}

int help(int[]arr, int lo, int hi) {
if (lo==hi) return 0;
if (lo==hi-1) return arr[lo];

int mid 1+1lo ¥
returr{ help (arr,lo,mid) elp (arr,mid, hi) ;
}

» If you have as many “friends of friends” as needed the recurrence
isnow T(n)=0(1)+1T(n/2)
— O(log n) : same recurrence as for £ind

Fall 2013 CSE373: Data Structure & Algorithms 14

Really common recurrences

Should know how to solve recurrences but also recognize some
really common ones:

T(n) = O(1) + T(n-1) linear

T(n) = O(1) + 2T(n/2) linear

T(n) = O(1) + T(n/2) logarithmic

T(n) = O(1) + 2T(n-1) exponential

T(n) = O(n) + T(n-1) quadratic (see previous lecture)
T(n) = O(n) + T(n/2) linear

T(n) = O(n) + 2T(n/2) O(n 1og n)

Note big-Oh can also use more than one variable
« Example: can sum all elements of an n-by-m matrix in O(nm)

Fall 2013 CSE373: Data Structure & Algorithms 15

Asymptotic notation

About to show formal definition, which amounts to saying:
1. Eliminate low-order terms
2. Eliminate coefficients

Examples:
— 4n+5
— 05nlogn+2n+7
- n¥+2"+3n
— nlog(10n?)

Fall 2013 CSE373: Data Structure & Algorithms 16

Big-Oh relates functions

We use O on a function f(n) (for example n2) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n?)
— 3n2+17 and n? have the same asymptotic behavior

Confusingly, we also say/write:
— (3n?+17) is O(n?)
— (Bn2+17) = O(n?)

But we would never say O(n?) = (3n?+17)

Fall 2013 CSE373: Data Structure & Algorithms 17

Formally Big-Oh (Dr? Ms? Mr? ©)

Definition:
g(n) is in O(f(n)) if there exist constants
cand n, such that g(n)< cf(n)foralln>n,

>
no —2 N

* To show g(n)isin O(f(n)), pick a c large enough to “cover the
constant factors” and n,large enough to “cover the lower-order
terms”

— Example: Let g(n) = 3n2+17 and f(n) = n?
¢=5 and n,=10 is more than good enough

* This is “less than or equal to”
— So 3n2+17 is also O(n%) and O(2") etc.

Fall 2013 CSE373: Data Structure & Algorithms 18

More examples, using formal definition

« Letg(n)=1000n and f(n) = n?
— A valid proof is to find valid ¢ and n,
— The “cross-over point” is n=1000
— So we can choose n,=1000 and c=1
* Many other possible choices, e.g., larger n,and/or ¢

Definition:
g(n)is in O(f(n)) if there exist constants
cand n, such that g(n) < cf(n)foralln>n,

Fall 2013 CSE373: Data Structure & Algorithms 19

More examples, using formal definition

« Letg(n)=n*andf(n)=2"
— A valid proof is to find valid ¢ and n,
— We can choose n,=20 and ¢=1

Definition:
g(n)is in O(f(n)) if there exist constants
cand n, such that g(n) < cf(n)foralln>n,

Fall 2013 CSE373: Data Structure & Algorithms 20

What'’s with the ¢

* The constant multiplier ¢ is what allows functions that differ only
in their largest coefficient to have the same asymptotic
complexity

* Example: g(n)=7n+5and f(n)=n
- For any choice of n,, need a ¢ > 7 (or more) to show g(n) is
in O(f(n))

Definition:
g(n)is in O(f(n)) if there exist constants
cand n, such that g(n) < cf(n)foralln>n,

Fall 2013 CSE373: Data Structure & Algorithms 21

What you can drop

» Eliminate coefficients because we don’t have units anyway

— 3n? versus 5n? doesn’t mean anything when we have not
specified the cost of constant-time operations (can re-scale)

» Eliminate low-order terms because they have vanishingly small
impact as n grows

» Do NOT ignore constants that are not multipliers
— ndis not O(n?)
— 3"is not O(2")

(This all follows from the formal definition)

Fall 2013 CSE373: Data Structure & Algorithms 22

Big-O: Common Names (Again)

o(1) constant (same as O(k) for constant k)
O(1logn) logarithmic

O(n) linear

O(n log n) “nlogn’

O(n?) quadratic

O(n®) cubic

O(nk) polynomial (where is k is any constant)
O(k") exponential (where k is any constant > 1)

Pet peeve: “exponential” does not mean “grows really fast”, it
means “grows at rate proportional to k" for some k>1"

— A savings account accrues interest exponentially (k=1.017?)
— If you don’t know k, you probably don’t know it's exponential

Fall 2013 CSE373: Data Structures & Algorithms 23

More Asymptotic Notation

» Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)

— g(n)isin O(f(n)) if there exist constants ¢ and n, such that
g(n) < cf(n)foralln=n,

* Lower bound: Q(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)

— g(n)is in Q(f(n)) if there exist constants ¢ and n, such that
g(n)= cf(n)foralln=n,

» Tight bound: 6(f(n)) is the set of all functions asymptotically
equal to f(n)
— Intersection of O(f(n)) and Q(f(n)) (use different ¢ values)

Fall 2013 CSE373: Data Structure & Algorithms 24

Correct terms, in theory

A common error is to say O(f(n)) when you mean 6(f(n))

— Since a linear algorithm is also O(n®), it's tempting to say “this
algorithm is exactly O(n)”

— That doesn’t mean anything, say it is 8(n)
— That means that it is not, for example O(1og n)

Less common notation:
— ‘“little-oh”: intersection of “big-Oh” and not “big-Theta”
* For all c, there exists an n, such that... <
» Example: array sum is o(n?) but not o(n)

— ‘“little-omega”: intersection of “big-Omega” and not “big-Theta”

* For all c, there exists an n, such that... >
» Example: array sum is o(1log n) but not w(n)

Fall 2013 CSE373: Data Structure & Algorithms 25

What we are analyzing

* The most common thing to do is give an O or 6 bound to the
worst-case running time of an algorithm

» Example: binary-search algorithm
— Common: 6(1og n) running-time in the worst-case
— Less common: 6(1) in the best-case (item is in the middle)
— Less common: Algorithm is (log log n) in the worst-case
(it is not really, really, really fast asymptotically)

— Less common (but very good to know): the find-in-sorted-
array problem is Q(1og n) in the worst-case

» No algorithm can do better

* A problem cannot be O(f(n)) since you can always find a
slower algorithm, but can mean there exists an algorithm

Fall 2013 CSE373: Data Structure & Algorithms 26

Other things to analyze

* Space instead of time
— Remember we can often use space to gain time

* Average case

— Sometimes only if you assume something about the
probability distribution of inputs

— Sometimes uses randomization in the algorithm
» Will see an example with sorting

— Sometimes an amortized guarantee
» Average time over any sequence of operations
» Will discuss in a later lecture

Fall 2013 CSE373: Data Structure & Algorithms 27

Summary

Analysis can be about:
* The problem or the algorithm (usually algorithm)
* Time or space (usually time)
— Or power or dollars or ...
» Best-, worst-, or average-case (usually worst)

* Upper-, lower-, or tight-bound (usually upper or tight)

Fall 2013 CSE373: Data Structure & Algorithms 28

Usually asymptotic is valuable

» Asymptotic complexity focuses on behavior for large n and is
independent of any computer / coding trick

» But you can “abuse” it to be misled about trade-offs

« Example: n""0vs. log n
— Asymptotically n'/10 grows more quickly
— But the “cross-over” point is around 5 * 107
— So if you have input size less than 258, prefer n'/10
* For small n, an algorithm with worse asymptotic complexity
might be faster

— Here the constant factors can matter, if you care about
performance for small n

Fall 2013 CSE373: Data Structure & Algorithms 29

Timing vs. Big-Oh Summary

» Big-oh is an essential part of computer science’s mathematical
foundation

— Examine the algorithm itself, not the implementation
— Reason about (even prove) performance as a function of n

» Timing also has its place
— Compare implementations
— Focus on data sets you care about (versus worst case)
— Determine what the constant factors “really are”

Fall 2013 CSE373: Data Structure & Algorithms 30

