CSE373: Data Structures and Algorithms
Lecture 2: Math Review; Algorithm Analysis

Dan Grossman
Fall 2013

Today

» Finish discussing stacks and queues

* Review math essential to algorithm analysis
— Proof by induction
— Powers of 2
— Binary numbers
— Exponents and logarithms

* Begin analyzing algorithms
— Using asymptotic analysis (continue next time)

Fall 2013 CSE373: Data Structures & Algorithms

Mathematical induction

Suppose P(n) is some predicate (mentioning integer n)

— Example: n2n/2 +1

To prove P(n) for all integers n 2 ny, it suffices to prove

1. P(ng) — called the “basis” or “base case”

2. If P(k), then P(k+1) — called the “induction step” or “inductive case”
Why we will care:

To show an algorithm is correct or has a certain running time no
matter how big a data structure or input value is

(Our “n” will be the data structure or input size.)

Fall 2013 CSE373: Data Structures & Algorithms 3

Example

P(n) = “the sum of the first n powers of 2 (starting at 0) is 2"-1”

Theorem: P(n) holds for all n = 1
Proof: By induction on n
» Base case: n=1. Sum of first 1 power of 2 is 20, which equals 1.
And for n=1, 2"-1 equals 1.
* Inductive case:
— Assume the sum of the first k powers of 2 is 2%-1
— Show the sum of the first (k+1) powers of 2 is 2k+1-1
Using assumption, sum of the first (k+1) powers of 2 is
(2k_1) + 2(+1)-1 = (2k_1) + 2k = Qk+1_4

Fall 2013 CSE373: Data Structures & Algorithms

Powers of 2

* Abitis 0 or 1 (just two different “letters” or “symbols”)

* A sequence of n bits can represent 2" distinct things
— For example, the numbers 0 through 2"-1

« 2'0ijs 1024 (“about a thousand”, kilo in CSE speak)

* 220 s “about a million”, mega in CSE speak

« 2% s “about a billion”, giga in CSE speak

Java: an int is 32 bits and signed, so “max int” is “about 2 billion”
a long is 64 bits and signed, so “max long” is 263-1

Fall 2013 CSE373: Data Structures & Algorithms 5

Therefore...

Could give a unique id to...

» Every person in the U.S. with 29 bits

» Every person in the world with 33 bits

» Every person to have ever lived with 38 bits (estimate)
» Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated,
do you think you could guess it?

Fall 2013 CSE373: Data Structures & Algorithms

Logarithms and Exponents

» Since so much is binary in CS 1og almost always means log,

» Definition: log, x = y if x = 2v

* So, log, 1,000,000 = “a little under 20”

» Just as exponents grow very quickly, logarithms grow very slowly

1200000
1000000
See Excel file BB s
for plot data — 690000 —m-2mn
play with it! 400000)
——nh2
200000
(1] % - -
12345678 91011121314151617181920
Fall 2013 CSE373: Data Structures & Algorithms 7

Logarithms and Exponents

» Since so much is binary 1og in CS almost always means log,

» Definition: log, x = yif x = 2¥

* So, log, 1,000,000 = “a little under 20”

» Just as exponents grow very quickly, logarithms grow very slowly

See Excel file

for plot data — iy -2
. -
play with it! o Wit
0
1 2 3 4 5
Fall 2013 CSE373: Data Structures & Algorithms 8

Logarithms and Exponents

» Since so much is binary 1og in CS almost always means log,

» Definition: log, x = yif x = 2v

* So, log, 1,000,000 = “a little under 20”

» Just as exponents grow very quickly, logarithms grow very slowly

See Excel file

for plot data —
play with it!

1234 %6 78 910111213141516171819320

Fall 2013 CSE373: Data Structures & Algorithms 9

Logarithms and Exponents

» Since so much is binary 1log in CS almost always means log,

» Definition: log, x = yif x = 2¥

* So, log, 1,000,000 = “a little under 20”

» Just as exponents grow very quickly, logarithms grow very slowly

000

2500

See Excel file s
for plot data — 1500 ——n

. . = logn

play with it! -, Bl
00
o

1 4 7 1013 16 19 27 25 28 31 34 37 40 43 46 49
Fall 2013 CSE373: Data Structures & Algorithms 10

Properties of logarithms

* log(A*B) = log A + log B
— So log(N*)= k log N

* log(A/B) = log A - log B

* log(log x) is written log log x
— Grows as slowly as 22 grows quickly

* (log x) (log x) is written log?x

— ltis greater than log xforallx > 2
— Itis not the same as log log x

Fall 2013 CSE373: Data Structures & Algorithms 11

Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”
— And we are about to stop worrying about constant factors!
— Inparticular, log, x = 3.22 log,;, x
— In general,
loggy x = (log, x) / (log, B)

Fall 2013 CSE373: Data Structures & Algorithms 12

Floor and ceiling

_XJ Floor function: the largest integer < X

|27 |=2 |-27]=-3 12]=2

(X—| Ceiling function: the smallest integer > X

[237=3 [-23]=-2 [2]=2

Fall 2013 CSE373: Data Structures & Algorithms 13

Floor and ceiling properties
1. X-1<[X]<X

2. X<[X]<X+1
3. [m2 |+[n/2]=n ifnisan integer

Fall 2013 CSE373: Data Structures & Algorithms 14

Algorithm Analysis

As the “size” of an algorithm’s input grows
(integer, length of array, size of queue, etc.):
— How much longer does the algorithm take (time)
— How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only
“which curve we are like”

Separate issue: Algorithm correctness — does it produce the right
answer for all inputs

— Usually more important, naturally

Fall 2013 CSE373: Data Structures & Algorithms 15

Example

* What does this pseudocode return?
x = 0;
for i=1 to N do
for j=1 to i do
X = x + 3;
return x;

» Correctness: Forany N = 0, it returns...

Fall 2013 CSE373: Data Structures & Algorithms 16

Example

* What does this pseudocode return?
x :=0;
for i=1 to N do
for j=1 to i do
x :=x + 3;
return x;

» Correctness: For any N 2 0, it returns 3N(N+1)/2
« Proof: By induction on n
— P(n) = after outer for-loop executes n times, x holds
3n(n+1)/2
— Base: n=0, returns 0
— Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
= (Bk(k+1) + 6(k+1))/2 = (k+1)(3k+6)/12 = 3(k+1)(k+2)/2

Fall 2013 CSE373: Data Structures & Algorithms 17

Example

» How long does this pseudocode run?
x = 0;
for i=1 to N do
for j=1 to i do
x = x + 3;
return x;
* Running time: For any N 2 0,
— Assignments, additions, returns take “1 unit time”
— Loops take the sum of the time for their iterations

* So: 2 + 2*(number of times inner loop runs)
— And how many times is that...

Fall 2013 CSE373: Data Structures & Algorithms 18

Example

» How long does this pseudocode run?
x = 0;
for i=1 to N do
for j=1 to i do
X = x + 3;
return x;
* The total number of loop iterations is N*(N+1)/2
— This is a very common loop structure, worth memorizing
— Proof is by induction on N, known for centuries
— This is proportional to N2, and we say O(N2), “big-Oh of”
» Forlarge enough N, the N and constant terms are
irrelevant, as are the first assignment and return
« See plot... N*(N+1)/2 vs. just N%/2

Fall 2013 CSE373: Data Structures & Algorithms 19

Lower-order terms don’t matter

N*(N+1)/2 vs. just N2/2

» relative difference

Fall 2013 CSE373: Data Structures & Algorithms 20

Geometric interpretation

N

i = N*N/2+N/2
i=1
for i=1 to N do
for j=1 to i do
// small work

* Area of square: N*N
» Area of lower triangle of square: N*N/2
» Extra area from squares crossing the diagonal: N*1/2

« As N grows, fraction of “extra area” compared to lower triangle
goes to zero (becomes insignificant)

Fall 2013 CSE373: Data Structures & Algorithms 21

Big-O: Common Names

o(1) constant (same as O(k) for constant k)
O(logn) logarithmic

O(n) linear

O(n log n) “‘nlogn”

O(n?) quadratic

O(n®) cubic

O(nk) polynomial (where is k is any constant)
O(k") exponential (where k is any constant > 1)

Pet peeve: “exponential” does not mean “grows really fast”, it
means “grows at rate proportional to k" for some k>1"

— A savings account accrues interest exponentially (k=1.017?)
— If you don’t know k, you probably don’t know it's exponential

Fall 2013 CSE373: Data Structures & Algorithms 22

