

CSE373: Data Structures & Algorithms Lecture 22: Parallel Reductions, Maps, and Algorithm Analysis

Dan Grossman Fall 2013

Outline

Done

- · How to write a parallel algorithm with fork and join
- Why using divide-and-conquer with lots of small tasks is best
 - Combines results in parallel
 - (Assuming library can handle "lots of small threads")

Now:

- More examples of simple parallel programs that fit the "map" or "reduce" patterns
- · Teaser: Beyond maps and reductions
- Asymptotic analysis for fork-join parallelism
- Amdahl's Law

Fall 2013 CSE373: Data Structures & Algorithms

2

What else looks like this?

- Saw summing an array went from O(n) sequential to O(log n) parallel (assuming a lot of processors and very large n!)
 - Exponential speed-up in theory (n / log n grows exponentially)

 Anything that can use results from two halves and merge them in O(1) time has the same property...

Fall 2013 CSE373: Data Structures & Algorithms

Examples

- · Maximum or minimum element
- Is there an element satisfying some property (e.g., is there a 17)?
- · Left-most element satisfying some property (e.g., first 17)
 - What should the recursive tasks return?
 - How should we merge the results?
- · Corners of a rectangle containing all points (a "bounding box")
- Counts, for example, number of strings that start with a vowel
 - This is just summing with a different base case
 - Many problems are!

Fall 2013 CSE373: Data Structures & Algorithms

4

Reductions

- Computations of this form are called reductions (or reduces?)
- · Produce single answer from collection via an associative operator
 - Associative: a + (b+c) = (a+b) + c
 - Examples: max, count, leftmost, rightmost, sum, product, ...
 - Non-examples: median, subtraction, exponentiation
- But some things are inherently sequential
 - How we process arr[i] may depend entirely on the result of processing arr[i-1]

Even easier: Maps (Data Parallelism)

- A map operates on each element of a collection independently to create a new collection of the same size
 - No combining results
 - For arrays, this is so trivial some hardware has direct support
- · Canonical example: Vector addition

```
int[] vector_add(int[] arr1, int[] arr2){
  assert (arr1.length == arr2.length);
  result = new int[arr1.length];
  FORALL(i=0; i < arr1.length; i++) {
    result[i] = arr1[i] + arr2[i];
  }
  return result;
}</pre>
```

Fall 2013 CSE373: Data Structures & Algorithms 5 Fall 2013 CSE373: Data Structures & Algorithms

In Java

```
class VecAdd extends java.lang.Thread {
  int lo; int hi; int[] res; int[] arr1; int[] arr2;
  VecAdd(int l,int h,int[] r,int[] al,int[] a2) { ... }
  protected void run() {
    if(hi - lo < SEQUENTIAL CUTOFF) {
        for(int i=lo; i < hi; i++)
            res[i] = arr1[i] + arr2[i];
    } else {
    int mid = (hi+lo)/2;
        VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
        VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
        left.start();
        right.run();
        left.join();
    }
}
int[] add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
    int[] ans = new int[arr1.length];
    (new VecAdd(0,arr.length,ans,arr1,arr2).run();
    return ans;
}</pre>
```

Maps and reductions

Maps and reductions: the "workhorses" of parallel programming

- By far the two most important and common patterns
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- Use maps and reductions to describe (parallel) algorithms
- Programming them becomes "trivial" with a little practice
 - · Exactly like sequential for-loops seem second-nature

Fall 2013 CSE373: Data Structures & Algorithms

Beyond maps and reductions

- Some problems are "inherently sequential"
 "Nine women can't make a baby in one month"
- · But not all parallelizable problems are maps and reductions
- If had one more lecture, would show "parallel prefix", a clever algorithm to parallelize the *problem* that this sequential *code* solves

Digression: MapReduce on clusters

- · You may have heard of Google's "map/reduce"
 - Or the open-source version Hadoop
- · Idea: Perform maps/reduces on data using many machines
 - The system takes care of distributing the data and managing fault tolerance

10

- You just write code to map one element and reduce elements to a combined result
- Separates how to do recursive divide-and-conquer from what computation to perform
 - Separating concerns is good software engineering

Fall 2013 CSE373: Data Structures & Algorithms

Analyzing algorithms

- · Like all algorithms, parallel algorithms should be:
 - Correct
 - Efficient
- For our algorithms so far, correctness is "obvious" so we'll focus on efficiency
 - Want asymptotic bounds
 - Want to analyze the algorithm without regard to a specific number of processors
 - Here: Identify the "best we can do" if the underlying threadscheduler does its part

Work and Span

Let T_P be the running time if there are P processors available

Two key measures of run-time:

- Work: How long it would take 1 processor = T₁
 - Just "sequentialize" the recursive forking
- Span: How long it would take infinity processors = T_∞
 - The longest dependence-chain
 - Example: O(log n) for summing an array
 - Notice having > n/2 processors is no additional help

Fall 2013 CSE373: Data Structures & Algorithms 11 Fall 2013 CSE373: Data Structures & Algorithms 12

Our simple examples

 Picture showing all the "stuff that happens" during a reduction or a map: it's a (conceptual!) DAG

Connecting to performance

- Recall: T_P = running time if there are P processors available
- Work = T₁ = sum of run-time of all nodes in the DAG
 - That lonely processor does everything
 - Any topological sort is a legal execution
 - O(n) for maps and reductions
- Span = T_{∞} = sum of run-time of all nodes on the most-expensive path in the DAG
 - Note: costs are on the nodes not the edges
 - Our infinite army can do everything that is ready to be done, but still has to wait for earlier results

14

- O(log n) for simple maps and reductions

Fall 2013 CSE373: Data Structures & Algorithms

Speed-up

Parallel algorithms is about decreasing span without increasing work too much

- Speed-up on P processors: T₁ / T_P
- Parallelism is the maximum possible speed-up: T₁ / T_∞
 - At some point, adding processors won't help
 - What that point is depends on the span
- In practice we have **P** processors. How well can we do?
 - We cannot do better than $O(T_{\infty})$ ("must obey the span")
 - We cannot do better than O(T₁ / P) ("must do all the work")
 - Not shown: With a "good thread scheduler", can do this well (within a constant factor of optimal!)

Fall 2013 CSE373: Data Structures & Algorithms

Examples

$$T_P = O(\max((T_1 / P), T_\infty))$$

- · In the algorithms seen so far (e.g., sum an array):
 - $\mathbf{T_1} = O(n)$
 - $\quad \mathbf{T}_{\infty} = O(\log n)$
 - So expect (ignoring overheads): $T_P = O(\max(n/P, \log n))$
- · Suppose instead:
 - $T_1 = O(n^2)$
 - $\mathbf{T}_{\infty} = O(n)$
 - So expect (ignoring overheads): $T_P = O(\max(n^2/P, n))$

Fall 2013 CSE373: Data Structures & Algorithms 16

Amdahl's Law (mostly bad news)

- · So far: analyze parallel programs in terms of work and span
- In practice, typically have parts of programs that parallelize well...
 - Such as maps/reductions over arrays
 - ...and parts that don't parallelize at all
 - Such as reading a linked list, getting input, doing computations where each needs the previous step, etc.

17

Amdahl's Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can't be parallelized

Then: $T_1 = S + (1-S) = 1$

Suppose parallel portion parallelizes perfectly (generous assumption)

Then: $T_P = S + (1-S)/P$

So the overall speedup with P processors is (Amdahl's Law):

$$T_1 / T_P = 1 / (S + (1-S)/P)$$

And the parallelism (infinite processors) is:

$$T_1 / T_{co} = 1 / S$$

Fall 2013 CSE373: Data Structures & Algorithms 18

Why such bad news

 $T_1 / T_P = 1 / (S + (1-S)/P)$

 $T_1 / T_m = 1 / S$

- · Suppose 33% of a program's execution is sequential
 - Then a billion processors won't give a speedup over 3
- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - For 256 processors to get at least 100x speedup, we need $100 \le 1 / (\mathbf{S} + (1-\mathbf{S})/256)$

Which means **S** ≤ .0061 (i.e., 99.4% perfectly parallelizable)

Fall 2013

CSE373: Data Structures & Algorithms

19

Fall 2013

CSE373: Data Structures & Algorithms

20

Moore and Amdahl

- Moore's "Law" is an observation about the progress of the semiconductor industry
 - Transistor density doubles roughly every 18 months
- · Amdahl's Law is a mathematical theorem
 - Diminishing returns of adding more processors
- · Both are incredibly important in designing computer systems

Fall 2013 CSE373: Data Structures & Algorithms

21

All is not lost

Amdahl's Law is a bummer!

- Unparallelized parts become a bottleneck very quickly
- But it doesn't mean additional processors are worthless
- · We can find new parallel algorithms
 - Some things that seem sequential are actually parallelizable
- · We can change the problem or do new things
 - Example: Video games use tons of parallel processors
 - · They are not rendering 10-year-old graphics faster
 - They are rendering more beautiful(?) monsters

Structures & Algorithms 20