Outline

Done:
- How to write a parallel algorithm with fork and join
- Why using divide-and-conquer with lots of small tasks is best
 - Combines results in parallel
 - (Assuming library can handle “lots of small threads”)

Now:
- More examples of simple parallel programs that fit the “map” or “reduce” patterns
- Teaser: Beyond maps and reductions
- Asymptotic analysis for fork-join parallelism
- Amdahl’s Law

What else looks like this?

- Saw summing an array went from $O(n)$ sequential to $O(\log n)$ parallel (assuming a lot of processors and very large n)
 - Exponential speed-up in theory ($n / \log n$ grows exponentially)
- Anything that can use results from two halves and merge them in $O(1)$ time has the same property...

Examples

- Maximum or minimum element
- Is there an element satisfying some property (e.g., is there a 17)?
- Left-most element satisfying some property (e.g., first 17)
 - What should the recursive tasks return?
 - How should we merge the results?
- Corners of a rectangle containing all points (a “bounding box”)
- Counts, for example, number of strings that start with a vowel
 - This is just summing with a different base case
 - Many problems are!

Reductions

- Computations of this form are called reductions (or reduces?)
- Produce single answer from collection via an associative operator
 - Associative: $a + (b+c) = (a+b) + c$
 - Examples: max, count, leftmost, rightmost, sum, product, ...
 - Non-examples: median, subtraction, exponentiation
- But some things are inherently sequential
 - How we process $arr[i]$ may depend entirely on the result of processing $arr[i-1]$

Even easier: Maps (Data Parallelism)

- A map operates on each element of a collection independently to create a new collection of the same size
 - No combining results
 - For arrays, this is so trivial some hardware has direct support
- Canonical example: Vector addition

```java
int[] vector_add(int[] arr1, int[] arr2){
    assert arr1.length == arr2.length;
    result = new int[arr1.length];
    FORALL(i=0; i < arr1.length; i++) {
        result[i] = arr1[i] + arr2[i];
    }
    return result;
}
```
In Java

```java
class VecAdd extends java.lang.Thread {
    int lo; int hi; int[] res; int[] arr1; int[] arr2;
    VecAdd(int l, int h, int[] r, int[] a1, int[] a2) { … }
    protected void run() {
        if (hi - lo < SEQUENTIAL_CUTOFF) {
            for (int i = lo; i < hi; i++)
                res[i] = arr1[i] + arr2[i];
        } else {
            int mid = (hi + lo) / 2;
            VecAdd left = new VecAdd(lo, mid, res, arr1, arr2);
            VecAdd right = new VecAdd(mid, hi, res, arr1, arr2);
            left.start();
            right.run();
            left.join();
        }
    }
    int[] add(int[] arr1, int[] arr2) {
        assert (arr1.length == arr2.length);
        int[] ans = new int[arr1.length];
        (new VecAdd(0, arr1.length, ans, arr1, arr2).run());
        return ans;
    }
}
```

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming

- By far the two most important and common patterns
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- Use maps and reductions to describe (parallel) algorithms
 - Exactly like sequential for-loops seem second-nature

Beyond maps and reductions

- Some problems are “inherently sequential”
 “Nine women can’t make a baby in one month”
- But not all parallelizable problems are maps and reductions
- If had one more lecture, would show “parallel prefix”, a clever algorithm to parallelize the problem that this sequential code solves

```java
int[] sum(int[] input){
    int[] output = new int[input.length];
    output[0] = input[0];
    for (int i = 1; i < input.length; i++)
        output[i] = output[i-1] + input[i];
    return output;
}
```

Digression: MapReduce on clusters

- You may have heard of Google’s “map/reduce”
 - Or the open-source version Hadoop
- Idea: Perform maps/reduces on data using many machines
 - The system takes care of distributing the data and managing fault tolerance
 - You just write code to map one element and reduce elements to a combined result
- Separates how to do recursive divide-and-conquer from what computation to perform
 - Separating concerns is good software engineering

Analyzing algorithms

- Like all algorithms, parallel algorithms should be:
 - Correct
 - Efficient
- For our algorithms so far, correctness is “obvious” so we’ll focus on efficiency
 - Want asymptotic bounds
 - Want to analyze the algorithm without regard to a specific number of processors
 - Here: Identify the “best we can do” if the underlying thread-scheduler does its part

Work and Span

Let T_p be the running time if there are P processors available

Two key measures of run-time:

- **Work**: How long it would take 1 processor = T_1
 - Just “sequentialize” the recursive forking
- **Span**: How long it would take infinity processors = $T_∞$
 - The longest dependence-chain
 - Example: $O(\log n)$ for summing an array
 - Notice having $n/2$ processors is no additional help
Our simple examples

- Picture showing all the “stuff that happens” during a reduction or a map: it’s a (conceptual!) DAG

Connecting to performance

- Recall: $T_P = \text{running time if there are } P \text{ processors available}$
- Work = $T_1 = \text{sum of run-time of all nodes in the DAG}$
 - That lonely processor does everything
 - Any topological sort is a legal execution
 - $O(n)$ for maps and reductions
- Span = $T_{\infty} = \text{sum of run-time of all nodes on the most-expensive path in the DAG}$
 - Note: costs are on the nodes not the edges
 - Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
 - $O(\log n)$ for simple maps and reductions

Speed-up

Parallel algorithms is about decreasing span without increasing work too much

- Speed-up on P processors: T_1 / T_P
- Parallelism is the maximum possible speed-up: T_1 / T_{∞}
 - At some point, adding processors won’t help
 - What that point is depends on the span

- In practice we have P processors. How well can we do?
 - We cannot do better than $O(T_{\infty})$ (“must obey the span”)
 - We cannot do better than $O(T_1 / P)$ (“must do all the work”)
 - Not shown: With a “good thread scheduler”, can do this well (within a constant factor of optimal!)

Examples

- $T_P = O(\max((T_1 / P),T_{\infty}))$
- In the algorithms seen so far (e.g., sum an array):
 - $T_1 = O(n)$
 - $T_{\infty} = O(\log n)$
 - So expect (ignoring overheads): $T_P = O(\max(n/P, \log n))$
- Suppose instead:
 - $T_1 = O(n^2)$
 - $T_{\infty} = O(n)$
 - So expect (ignoring overheads): $T_P = O(\max(n^2/P, n))$

Amdahl’s Law (mostly bad news)

- So far: analyze parallel programs in terms of work and span
- In practice, typically have parts of programs that parallelize well…
 - Such as maps/reductions over arrays
 - and parts that don’t parallelize at all
 - Such as reading a linked list, getting input, doing computations where each needs the previous step, etc.

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time
Let S be the portion of the execution that can’t be parallelized
Then:

$$T_1 = S + (1-S) = 1$$

Suppose parallel portion parallelizes perfectly (generous assumption)
Then:

$$T_P = S + (1-S)/P$$

So the overall speedup with P processors is (Amdahl’s Law):

$$T_1 / T_P = 1 / (S + (1-S)/P)$$

And the parallelism (infinite processors) is:

$$T_1 / T_{\infty} = 1 / S$$
Why such bad news

\(T_1 / T_P = 1 / (S + (1-S)/P) \) \(T_1 / T_\infty = 1 / S \)

• Suppose 33% of a program’s execution is sequential
 – Then a billion processors won’t give a speedup over 3

• Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 – Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 – For 256 processors to get at least 100x speedup, we need
 \(100 \leq 1 / (S + (1-S)/256) \)
 Which means \(S \leq .0061 \) (i.e., 99.4% perfectly parallelizable)

All is not lost

Amdahl’s Law is a bummer!
 – Unparallelized parts become a bottleneck very quickly
 – But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms
 – Some things that seem sequential are actually parallelizable

• We can change the problem or do new things
 – Example: Video games use tons of parallel processors
 • They are not rendering 10-year-old graphics faster
 • They are rendering more beautiful(?) monsters

Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the semiconductor industry
 – Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem
 – Diminishing returns of adding more processors

• Both are incredibly important in designing computer systems