Outline

Done:
• How to write a parallel algorithm with fork and join
• Why using divide-and-conquer with lots of small tasks is best
 – Combines results in parallel
 – (Assuming library can handle “lots of small threads”)

Now:
• More examples of simple parallel programs that fit the “map” or “reduce” patterns
• Teaser: Beyond maps and reductions
• Asymptotic analysis for fork-join parallelism
• Amdahl’s Law
What else looks like this?

- Saw summing an array went from $O(n)$ sequential to $O(\log n)$ parallel (assuming a lot of processors and very large n!)
 - Exponential speed-up in theory ($n / \log n$ grows exponentially)

- Anything that can use results from two halves and merge them in $O(1)$ time has the same property…
Examples

• Maximum or minimum element

• Is there an element satisfying some property (e.g., is there a 17)?

• Left-most element satisfying some property (e.g., first 17)
 – What should the recursive tasks return?
 – How should we merge the results?

• Corners of a rectangle containing all points (a “bounding box”)

• Counts, for example, number of strings that start with a vowel
 – This is just summing with a different base case
 – Many problems are!
Reductions

• Computations of this form are called reductions (or reduces?)

• Produce single answer from collection via an associative operator
 – Associative: $a + (b+c) = (a+b) + c$
 – Examples: max, count, leftmost, rightmost, sum, product, …
 – Non-examples: median, subtraction, exponentiation

• But some things are inherently sequential
 – How we process $arr[i]$ may depend entirely on the result of processing $arr[i-1]$
Even easier: Maps (Data Parallelism)

- A map operates on each element of a collection independently to create a new collection of the same size
 - No combining results
 - For arrays, this is so trivial some hardware has direct support

- Canonical example: Vector addition

```java
int[] vector_add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
    result = new int[arr1.length];
    FORALL(i=0; i < arr1.length; i++) {
        result[i] = arr1[i] + arr2[i];
    }
    return result;
}
```
In Java

class VecAdd extends java.lang.Thread {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ ... }
 protected void run()
 {
 if(hi - lo < SEQUENTIAL_CUTOFF) {
 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
 VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
 left.start();
 right.run();
 left.join();
 }
 }
}

int[] add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 (new VecAdd(0,arr.length,ans,arr1,arr2).run();
 return ans;
}
Maps and reductions

Maps and reductions: the “workhorses” of parallel programming

- By far the two most important and common patterns
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- Use maps and reductions to describe (parallel) algorithms
- Programming them becomes “trivial” with a little practice
 - Exactly like sequential for-loops seem second-nature
Beyond maps and reductions

• Some problems are “inherently sequential”
 “Nine women can’t make a baby in one month”

• But not all parallelizable problems are maps and reductions

• If had one more lecture, would show “parallel prefix”, a clever algorithm to parallelize the problem that this sequential code solves

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>

```java
int[] prefix_sum(int[] input) {
    int[] output = new int[input.length];
    output[0] = input[0];
    for (int i = 1; i < input.length; i++)
        output[i] = output[i-1] + input[i];
    return output;
}
```
Digression: MapReduce on clusters

• You may have heard of Google’s “map/reduce”
 – Or the open-source version Hadoop

• Idea: Perform maps/reduces on data using many machines
 – The system takes care of distributing the data and managing fault tolerance
 – You just write code to map one element and reduce elements to a combined result

• Separates how to do recursive divide-and-conquer from what computation to perform
 – Separating concerns is good software engineering
Analyzing algorithms

• Like all algorithms, parallel algorithms should be:
 – Correct
 – Efficient

• For our algorithms so far, correctness is “obvious” so we’ll focus on efficiency
 – Want asymptotic bounds
 – Want to analyze the algorithm without regard to a specific number of processors
 – Here: Identify the “best we can do” if the underlying thread-scheduler does its part
Work and Span

Let T_P be the running time if there are P processors available.

Two key measures of run-time:

- **Work**: How long it would take 1 processor = T_1
 - Just “sequentialize” the recursive forking

- **Span**: How long it would take infinity processors = T_∞
 - The longest dependence-chain
 - Example: $O(\log n)$ for summing an array
 - Notice having $> n/2$ processors is no additional help
Our simple examples

- Picture showing all the “stuff that happens” during a reduction or a map: it’s a (conceptual!) DAG
Connecting to performance

• Recall: $T_P = \text{running time if there are } P \text{ processors available}$

• Work = $T_1 = \text{sum of run-time of all nodes in the DAG}$
 – That lonely processor does everything
 – Any topological sort is a legal execution
 – $O(n)$ for maps and reductions

• Span = $T_\infty = \text{sum of run-time of all nodes on the most-expensive path in the DAG}$
 – Note: costs are on the nodes not the edges
 – Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
 – $O(\log n)$ for simple maps and reductions
Speed-up

Parallel algorithms is about decreasing span without increasing work too much

- **Speed-up** on P processors: T_1 / T_P

- **Parallelism** is the maximum possible speed-up: T_1 / T_∞
 - At some point, adding processors won’t help
 - What that point is depends on the span

- In practice we have P processors. How well can we do?
 - We cannot do better than $O(T_\infty)$ (“must obey the span”)
 - We cannot do better than $O(T_1 / P)$ (“must do all the work”)
 - Not shown: With a “good thread scheduler”, can do this well (within a constant factor of optimal!)
Examples

\[T_P = O(\max((T_1 / P), T_\infty)) \]

- In the algorithms seen so far (e.g., sum an array):
 - \(T_1 = O(n) \)
 - \(T_\infty = O(\log n) \)
 - So expect (ignoring overheads): \(T_P = O(\max(n/P, \log n)) \)

- Suppose instead:
 - \(T_1 = O(n^2) \)
 - \(T_\infty = O(n) \)
 - So expect (ignoring overheads): \(T_P = O(\max(n^2/P, n)) \)
Amdahl’s Law (mostly bad news)

• So far: analyze parallel programs in terms of work and span

• In practice, typically have parts of programs that parallelize well…
 – Such as maps/reductions over arrays

 …and parts that don’t parallelize at all

 – Such as reading a linked list, getting input, doing computations where each needs the previous step, etc.
Amdahl’s Law (mostly bad news)

Let the \textit{work} (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then:
\[T_1 = S + (1-S) = 1 \]

Suppose \textit{parallel portion parallelizes perfectly} (generous assumption)

Then:
\[T_P = S + (1-S)/P \]

So the overall speedup with P processors is (Amdahl’s Law):
\[\frac{T_1}{T_P} = 1 / (S + (1-S)/P) \]

And the parallelism (infinite processors) is:
\[\frac{T_1}{T_\infty} = 1 / S \]
Why such bad news

\[\frac{T_1}{T_P} = \frac{1}{S + \frac{1-S}{P}} \quad \quad \quad \frac{T_1}{T_\infty} = \frac{1}{S} \]

- Suppose 33% of a program’s execution is sequential
 - Then a billion processors won’t give a speedup over 3
- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - For 256 processors to get at least 100x speedup, we need
 \[100 \leq \frac{1}{S + \frac{(1-S)}{256}} \]
 Which means \(S \leq .0061 \) (i.e., 99.4% perfectly parallelizable)
All is not lost

Amdahl’s Law is a bummer!

- Unparallelized parts become a bottleneck very quickly
- But it doesn’t mean additional processors are worthless

- We can find new parallel algorithms
 - Some things that seem sequential are actually parallelizable

- We can change the problem or do new things
 - Example: Video games use tons of parallel processors
 - They are not rendering 10-year-old graphics faster
 - They are rendering more beautiful (?) monsters
Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the semiconductor industry
 – Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem
 – Diminishing returns of adding more processors

• Both are incredibly important in designing computer systems