
CSE373: Data Structures & Algorithms
Lecture 20: Beyond Comparison Sorting

Dan Grossman
Fall 2013

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Fall 2013 2 CSE373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
��(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How Fast Can We Sort?

• Heapsort & mergesort have O(n log n) worst-case running time

• Quicksort has O(n log n) average-case running time

• These bounds are all tight, actually �(n log n)

• So maybe we need to dream up another algorithm with a lower
asymptotic complexity, such as O(n) or O(n log log n)
– Instead: we know that this is impossible

• Assuming our comparison model: The only operation an
algorithm can perform on data items is a 2-element
comparison

Fall 2013 3 CSE373: Data Structures & Algorithms

A General View of Sorting

• Assume we have n elements to sort
– For simplicity, assume none are equal (no duplicates)

• How many permutations of the elements (possible orderings)?

• Example, n=3
 a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]
 a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

• In general, n choices for least element, n-1 for next, n-2 for next, …

– n(n-1)(n-2)…(2)(1) = n! possible orderings

Fall 2013 4 CSE373: Data Structures & Algorithms

Counting Comparisons

• So every sorting algorithm has to “find” the right answer among
the n! possible answers
– Starts “knowing nothing”, “anything is possible”
– Gains information with each comparison
– Intuition: Each comparison can at best eliminate half the

remaining possibilities
– Must narrow answer down to a single possibility

• What we can show:
 Any sorting algorithm must do at least (1/2)nlog n – (1/2)n
 (which is ��(n log n)) comparisons

– Otherwise there are at least two permutations among the n!
possible that cannot yet be distinguished, so the algorithm
would have to guess and could be wrong [incorrect algorithm]

Fall 2013 5 CSE373: Data Structures & Algorithms

Optional: Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress
without doing comparisons
– Eventually does a first comparison “is a < b ?"
– Can use the result to decide what second comparison to do
– Etc.: comparison k can be chosen based on first k-1 results

• Can represent this process as a decision tree

– Nodes contain “set of remaining possibilities”
• Root: None of the n! options yet eliminated

– Edges are “answers from a comparison”
– The algorithm does not actually build the tree; it’s what our

proof uses to represent “the most the algorithm could know
so far” as the algorithm progresses

Fall 2013 6 CSE373: Data Structures & Algorithms

Optional: One Decision Tree for n=3

Fall 2013 7 CSE373: Data Structures & Algorithms

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

• The leaves contain all the possible orderings of a, b, c
• A different algorithm would lead to a different tree

Optional: Example if a < c < b

Fall 2013 8 CSE373: Data Structures & Algorithms

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

Optional: What the Decision Tree Tells Us

• A binary tree because each comparison has 2 outcomes
– (We assume no duplicate elements)
– (Would have 1 outcome if algorithm asks redundant questions)

• Because any data is possible, any algorithm needs to ask enough

questions to produce all n! answers
– Each answer is a different leaf
– So the tree must be big enough to have n! leaves
– Running any algorithm on any input will at best correspond to a

root-to-leaf path in some decision tree with n! leaves
– So no algorithm can have worst-case running time better than

the height of a tree with n! leaves
• Worst-case number-of-comparisons for an algorithm is an

input leading to a longest path in algorithm’s decision tree
Fall 2013 9 CSE373: Data Structures & Algorithms

Optional: Where are we

• Proven: No comparison sort can have worst-case running time
better than the height of a binary tree with n! leaves
– A comparison sort could be worse than this height, but it

cannot be better

• Now: a binary tree with n! leaves has height ��(n log n)
– Height could be more, but cannot be less
– Factorial function grows very quickly

• Conclusion: Comparison sorting is � (n log n)

– An amazing computer-science result: proves all the clever
programming in the world cannot comparison-sort in linear
time

Fall 2013 10 CSE373: Data Structures & Algorithms

Optional: Height lower bound

• The height of a binary tree with L leaves is at least log2 L
• So the height of our decision tree, h:

 h � log2 (n!) property of binary trees
 = log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial
 = log2 n + log2 (n-1) + … + log2 1 property of logarithms
 � log2 n + log2 (n-1) + … + log2 (n/2) drop smaller terms (�0)
 � log2 (n/2) + log2 (n/2) + … + log2 (n/2) shrink terms to log2 (n/2)
 = (n/2)log2 (n/2) arithmetic
 = (n/2)(log2 n - log2 2) property of logarithms
 = (1/2)nlog2 n – (1/2)n arithmetic
 “=“ �� (n log n)

Fall 2013 11 CSE373: Data Structures & Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Fall 2013 12 CSE373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
��(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How???
• Change the model – assume
 more than “compare(a,b)”

BucketSort (a.k.a. BinSort)
• If all values to be sorted are known to be integers between 1

and K (or any small range):
– Create an array of size K
– Put each element in its proper bucket (a.k.a. bin)
– If data is only integers, no need to store more than a count of

how times that bucket has been used
• Output result via linear pass through array of buckets

Fall 2013 13 CSE373: Data Structures & Algorithms

count array

1 3
2 1
3 2
4 2
5 3

• Example:
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

• Overall: O(n+K)
– Linear in n, but also linear in K
– �(n log n) lower bound does not apply because this is not a

comparison sort

• Good when K is smaller (or not much larger) than n
– We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n

– Wasted space; wasted time during linear O(K) pass

• For data in addition to integer keys, use list at each bucket

Fall 2013 14 CSE373: Data Structures & Algorithms

Bucket Sort with Data
• Most real lists aren’t just keys; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, insert in O(1) (at beginning, or keep pointer to

last element)

count array

1

2

3

4

5

• Example: Movie ratings;
scale 1-5;1=bad, 5=excellent
Input=
 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original

Trilogy
 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
•Easy to keep ‘stable’; Casablanca still before Star Wars

Fall 2013 15 CSE373: Data Structures & Algorithms

Radix sort
• Radix = “the base of a number system”

– Examples will use 10 because we are used to that
– In implementations use larger numbers

• For example, for ASCII strings, might use 128

• Idea:
– Bucket sort on one digit at a time

• Number of buckets = radix
• Starting with least significant digit
• Keeping sort stable

– Do one pass per digit
– Invariant: After k passes (digits), the last k digits are sorted

• Aside: Origins go back to the 1890 U.S. census

Fall 2013 16 CSE373: Data Structures & Algorithms

Example

Radix = 10

Input: 478
 537
 9
 721
 3
 38
 143
 67

Fall 2013 17 CSE373: Data Structures & Algorithms

First pass:
 bucket sort by ones digit

1
 721

2 3

 3
143

4 5 6 7

537
 67

8

478
 38

9

 9

0

Order now: 721
 3
 143
 537
 67
 478
 38
 9

Example

Fall 2013 18 CSE373: Data Structures & Algorithms

Second pass:
 stable bucket sort by tens digit

1
 721

2 3

 3
143

4 5 6 7

537
 67

8

478
 38

9

 9

0

Order now: 3
 9
 721
 537
 38
 143
 67
 478

Radix = 10

Order was: 721
 3
 143
 537
 67
 478
 38
 9

1

2

721

3

537
 38

4

143

5 6

 67

7

478

8 9

0

 3
 9

Example

Fall 2013 19 CSE373: Data Structures & Algorithms

Third pass:
 stable bucket sort by 100s digit

Order now: 3
 9
 38
 67
 143
 478
 537
 721

Radix = 10

1
 143

2 3 4

478

5

537

6 7

721

8 9

0

 3
 9
 38
 67 Order was: 3

 9
 721
 537
 38
 143
 67
 478

1

2

721

3

537
 38

4

143

5 6

 67

7

478

8 9

0

 3
 9

Analysis
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not
– Example: Strings of English letters up to length 15

• Run-time proportional to: 15*(52 + n)
• This is less than n log n only if n > 33,000
• Of course, cross-over point depends on constant factors of

the implementations
– And radix sort can have poor locality properties

Fall 2013 20 CSE373: Data Structures & Algorithms

Sorting massive data

• Need sorting algorithms that minimize disk/tape access time:
– Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses
– Mergesort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

• Mergesort is the basis of massive sorting

• Mergesort can leverage multiple disks

21 CSE373: Data Structures & Algorithms Fall 2013

Last Slide on Sorting
• Simple O(n2) sorts can be fastest for small n

– Selection sort, Insertion sort (latter linear for mostly-sorted)
– Good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts
– Heap sort, in-place but not stable nor parallelizable
– Merge sort, not in place but stable and works as external sort
– Quick sort, in place but not stable and O(n2) in worst-case

• Often fastest, but depends on costs of comparisons/copies
• �� (n log n) is worst-case and average lower-bound for sorting by

comparisons
• Non-comparison sorts

– Bucket sort good for small number of possible key values
– Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!
Fall 2013 22 CSE373: Data Structures & Algorithms

