The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple algorithms: \(O(n^2)\)

Fancier algorithms: \(O(n \log n)\)

Comparison lower bound: \(\Omega(n \log n)\)

Specialized algorithms: \(O(n)\)

Handling huge data sets

Insertion sort

Selection sort

Shell sort

...

Heap sort

Merge sort

Quick sort (avg)

...

Bucket sort

Radix sort

External sorting

How Fast Can We Sort?

- Heapsort & mergesort have \(O(n \log n)\) worst-case running time
- Quicksort has \(O(n \log n)\) average-case running time
- These bounds are all tight, actually \(\Theta(n \log n)\)
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as \(O(n)\) or \(O(n \log \log n)\)
 - Instead: we know that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A General View of Sorting

- Assume we have \(n\) elements to sort
 - For simplicity, assume none are equal (no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, \(n=3\)
 - \(a[0]<a[1]<a[2]\)
 - \(a[0]<a[2]<a[1]\)
 - \(a[1]<a[0]<a[2]\)
 - \(a[1]<a[2]<a[0]\)
 - \(a[2]<a[0]<a[1]\)
 - \(a[2]<a[1]<a[0]\)
- In general, \(n\) choices for least element, \(n-1\) for next, \(n-2\) for next, ...
 - \(n(n-1)(n-2)...(2)(1) = n!\) possible orderings

Counting Comparisons

- So every sorting algorithm has to “find” the right answer among the \(n!\) possible answers
 - Starts “knowing nothing”, “anything is possible”
 - Gains information with each comparison
 - Intuition: Each comparison can at best eliminate half the remaining possibilities
 - Must narrow answer down to a single possibility
- What we can show:
 - Any sorting algorithm must do at least \((1/2)n \log n\) comparisons
 (which is \(\Omega(n \log n)\))
 - Otherwise there are at least two permutations among the \(n!\) possible that cannot yet be distinguished, so the algorithm would have to guess and could be wrong [incorrect algorithm]

Optional: Counting Comparisons

- Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 - Eventually does a first comparison “is \(a < b\)?”
 - Can use the result to decide what second comparison to do
 - Etc.: comparison \(k\) can be chosen based on first \(k-1\) results
- Can represent this process as a decision tree
 - Nodes contain “set of remaining possibilities”
 - Root: None of the \(n!\) options yet eliminated
 - Edges are “answers from a comparison”
 - The algorithm does not actually build the tree; it’s what our proof uses to represent “the most the algorithm could know so far” as the algorithm progresses
Optional: One Decision Tree for n=3

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree

Optional: What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
 - (We assume no duplicate elements)
 - (Would have 1 outcome if algorithm asks redundant questions)
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a different leaf
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n! leaves
 - So no algorithm can have worst-case running time better than the height of a tree with n! leaves
- Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Optional: Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with n! leaves
 - A comparison sort could be worse than this height, but it cannot be better
- Now: a binary tree with n! leaves has height \(\Omega(n \log n) \)
 - Height could be more, but cannot be less
 - Factorial function grows very quickly
- Conclusion: Comparison sorting is \(\Omega(n \log n) \)
 - An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

Optional: Height lower bound

- The height of a binary tree with L leaves is at least \(\log_2 L \)
- So the height of our decision tree, h:

\[
\begin{align*}
 h & \geq \log_2 (n!) \\
 & = \log_2 n + \log_2 (n-1) + \ldots + \log_2 (n/2) \\
 & \geq \log_2 n + \log_2 (n/2) + \ldots + \log_2 (n/2) \\
 & = (n/2) \log_2 (n/2) \\
 & = (n/2)(n \log n - \log n) \\
 & = \Omega(n \log n)
\end{align*}
\]

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple algorithms: \(O(n^2) \)
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: \(O(n \log n) \)
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)
- Bucket sort
- Radix sort

Handling huge data sets

How???
- Change the model – assume more than “compare(a,b)”
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3</td>
</tr>
<tr>
<td>2 1</td>
</tr>
<tr>
<td>3 2</td>
</tr>
<tr>
<td>4 2</td>
</tr>
<tr>
<td>5 3</td>
</tr>
</tbody>
</table>

Example:

- K=5
 - input: (5,1,3,4,3,2,1,5,4,5)
 - output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

- Overall: O(n+K)
 - Linear in n, but also linear in K
 - \(\Omega(n \log n)\) lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
 - We don’t spend time doing comparisons of duplicates
- Bad when K is much larger than n
 - Wasted space; wasted time during linear O(K) pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren’t just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in O(1) (at beginning, or keep pointer to last element)

<table>
<thead>
<tr>
<th>count array</th>
<th>Rocky V</th>
<th>Harry Potter</th>
<th>Casablanca</th>
<th>Star Wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: Movie ratings;

- Input:
 - 5: Casablanca
 - 3: Harry Potter movies
 - 5: Star Wars Original Trilogy
- 1: Rocky V

- Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- Easy to keep ‘stable’; Casablanca still before Star Wars

Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit
 - Keeping sort stable
 - Do one pass per digit
 - Invariant: After k passes (digits), the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721 3 453 478 9</td>
</tr>
</tbody>
</table>

Input: 478 537 9 721 3 38 143 67

- First pass: bucket sort by ones digit
 - Order now: 721 3 143 9 478 537

Second pass: stable bucket sort by tens digit

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 3 721 537 143 67 478</td>
</tr>
</tbody>
</table>

Order was: 721 3 143 9 537 67 478

Order now: 3 9 143 721 537 67 478
Example

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>721</td>
<td>537</td>
<td>38</td>
<td>143</td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radix = 10

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>143</td>
<td>478</td>
<td>537</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order now: 3

Third pass: stable bucket sort by 100s digit

Order was:

3
9
721
537
38
143
67
478
537
721

Analysis

Input size: \(n \)

Number of buckets = Radix: \(B \)

Number of passes = “Digits”: \(P \)

Work per pass is 1 bucket sort: \(O(B+n) \)

Total work is \(O(P(B+n)) \)

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Run-time proportional to: \(15*(52+n) \)
 - This is less than \(n \log n \) only if \(n > 33,000 \)
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Mergesort is the basis of massive sorting
- Mergesort can leverage multiple disks

Last Slide on Sorting

- Simple \(O(n^2) \) sorts can be fastest for small \(n \)
 - Selection sort, Insertion sort (latter linear for mostly-sorted)
 - Good for “below a cut-off” to help divide-and-conquer sorts
- \(O(n \log n) \) sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and \(O(n^2) \) in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- \(\Omega(n \log n) \) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of possible key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!