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The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
��(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort (avg) 
… 

Bucket sort 
Radix sort 

External 
sorting 

How Fast Can We Sort? 

• Heapsort & mergesort have O(n log n) worst-case running time 
 

• Quicksort has O(n log n) average-case running time 
 

• These bounds are all tight, actually �(n log n) 
 

• So maybe we need to dream up another algorithm with a lower 
asymptotic complexity, such as O(n) or O(n  log log n) 
– Instead: we know that this is impossible 

• Assuming our comparison model: The only operation an 
algorithm can perform on data items is a 2-element 
comparison 
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A General View of Sorting 

• Assume we have n elements to sort  
– For simplicity, assume none are equal (no duplicates) 

 
• How many permutations of the elements (possible orderings)? 

 
• Example, n=3 
  a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2] 
      a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0] 

 
• In general, n choices for least element, n-1 for next, n-2 for next, … 

– n(n-1)(n-2)…(2)(1) = n!  possible orderings 
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Counting Comparisons 

• So every sorting algorithm has to “find” the right answer among 
the n! possible answers 
– Starts “knowing nothing”, “anything is possible” 
– Gains information with each comparison 
– Intuition: Each comparison can at best eliminate half  the 

remaining possibilities 
– Must narrow answer down to a single possibility 

 
• What we can show: 
   Any sorting algorithm must do at least (1/2)nlog n – (1/2)n    
  (which is ��(n log n)) comparisons 

– Otherwise there are at least two permutations among the n! 
possible that cannot yet be distinguished, so the algorithm 
would have to guess and could be wrong [incorrect algorithm] 
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Optional: Counting Comparisons 

• Don’t know what the algorithm is, but it cannot make progress 
without doing comparisons 
– Eventually does a first comparison “is a < b ?" 
– Can use the result to decide what second comparison to do 
– Etc.: comparison k can be chosen based on first k-1 results 

 
• Can represent this process as a decision tree 

– Nodes contain “set of remaining possibilities” 
• Root: None of the n! options  yet eliminated 

– Edges are “answers from a comparison” 
– The algorithm does not actually build the tree; it’s what our 

proof uses to represent “the most the algorithm could know 
so far” as the algorithm progresses 
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Optional: One Decision Tree for n=3 
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a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

• The leaves contain all the possible orderings of a, b, c 
• A different algorithm would lead to a different tree 

Optional: Example if a < c < b 
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a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

possible orders 

actual order 

Optional: What the Decision Tree Tells Us 

• A binary tree because each comparison has 2 outcomes 
– (We assume no duplicate elements) 
– (Would have 1 outcome if algorithm asks redundant questions) 

 
• Because any data is possible, any algorithm needs to ask enough 

questions to produce all n! answers 
– Each answer is a different leaf 
– So the tree must be big enough to have n! leaves 
– Running any algorithm on any input will at best correspond to a 

root-to-leaf path in some decision tree with n! leaves 
– So no algorithm can have worst-case running time better than 

the height of a tree with n! leaves 
• Worst-case number-of-comparisons for an algorithm is an 

input leading to a longest path in algorithm’s decision tree 
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Optional: Where are we 

• Proven: No comparison sort can have worst-case running time 
better than the height of a binary tree with n! leaves 
– A comparison sort could be worse than this height, but it 

cannot be better 
 

• Now: a binary tree with n! leaves has height ��(n log n) 
– Height could be more, but cannot be less 
– Factorial function grows very quickly 

 
• Conclusion: Comparison sorting is � (n log n) 

– An amazing computer-science result: proves all the clever 
programming in the world cannot comparison-sort in linear 
time 
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Optional: Height lower bound 

• The height of a binary tree with L leaves is at least log2 L 
• So the height of our decision tree, h: 
 

   h � log2 (n!)                                                      property of binary trees 
      = log2 (n*(n-1)*(n-2)…(2)(1))             definition of factorial 
      = log2 n       + log2 (n-1) + … + log2 1        property of logarithms 
      � log2 n       + log2 (n-1)  + … + log2 (n/2) drop smaller terms (�0) 
      � log2 (n/2)  + log2 (n/2)  + … + log2 (n/2) shrink terms to log2 (n/2) 
      = (n/2)log2 (n/2)                                       arithmetic 
      = (n/2)(log2 n - log2 2)              property of logarithms 
      = (1/2)nlog2 n – (1/2)n          arithmetic 
      “=“ �� (n log n) 
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The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
��(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort (avg) 
… 

Bucket sort 
Radix sort 

External 
sorting 

How??? 
•  Change the model – assume     
   more than “compare(a,b)” 



BucketSort (a.k.a. BinSort) 
• If all values to be sorted are known to be integers between 1 

and K (or any small range): 
– Create an array of size K  
– Put each element in its proper bucket (a.k.a. bin) 
– If data is only integers, no need to store more than a count of 

how times that bucket has been used 
• Output result via linear pass through array of buckets 
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count array 

1 3 
2 1 
3 2 
4 2 
5 3 

• Example:  
K=5 
input (5,1,3,4,3,2,1,1,5,4,5) 

   output: 1,1,1,2,3,3,4,4,5,5,5 

Analyzing Bucket Sort 

• Overall: O(n+K) 
– Linear in n, but also linear in K 
– �(n log n) lower bound does not apply because this is not a 

comparison sort 
 

• Good when K is smaller (or not much larger) than n 
– We don’t spend time doing comparisons of duplicates 

 
• Bad when K is much larger than n 

– Wasted space; wasted time during linear O(K) pass 
 

• For data in addition to integer keys, use list at each bucket 
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Bucket Sort with Data 
• Most real lists aren’t just keys; we have data 
• Each bucket is a list (say, linked list) 
• To add to a bucket, insert in O(1) (at beginning, or keep pointer to 

last element) 

count array 

1 

2 

3 

4 

5 

• Example: Movie ratings; 
scale 1-5;1=bad, 5=excellent 
Input= 
 5: Casablanca 
 3: Harry Potter movies 
 5: Star Wars Original 

Trilogy 
 1: Rocky V 

Rocky V 

Harry Potter 

Casablanca Star Wars 

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars 
•Easy to keep ‘stable’; Casablanca still before Star Wars 
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Radix sort 
• Radix = “the base of a number system” 

– Examples will use 10 because we are used to that 
– In implementations use larger numbers 

• For example, for ASCII strings, might use 128 
 

• Idea: 
– Bucket sort on one digit at a time 

• Number of buckets = radix 
• Starting with least significant digit 
• Keeping sort stable 

– Do one pass per digit 
– Invariant: After k passes (digits), the last k digits are sorted 

 

• Aside: Origins go back to the 1890 U.S. census 
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Example 

Radix = 10 
 
 
 

 
Input:   478 
         537 
     9 
            721 
     3 
   38 
         143 
    67 
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First pass:  
 bucket sort by ones digit  

1
  721 

2 3 

    3 
143 

4 5 6 7 

537 
  67 

8 

478 
  38 

9 

    9 

0 

Order now: 721 
                   3 
                   143 
                   537 
                     67 
                   478 
                     38 
                       9 
   

Example 
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Second pass:  
 stable bucket sort by tens digit  
      

1
  721 

2 3 

    3 
143 

4 5 6 7 

537 
  67 

8 

478 
  38 

9 

    9 

0 

Order now:     3 
                   9 
                   721 
        537 
                     38 
        143 
                     67 
                   478 
   

Radix = 10 

Order was: 721 
                   3 
                   143 
                   537 
                     67 
                   478 
                     38 
                       9 
   

1
  

2 

721 

3 

537 
  38 

4 

143 

5 6 

  67 

7 

478 
   

8 9 

     

0 

    3 
    9 



Example 
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Third pass:  
 stable bucket sort by 100s digit  
      

Order now:     3 
                   9 
                     38 
          67 
                   143 
        478 
                   537 
                   721 
   

Radix = 10 

1
  143 

2 3 4 

478 

5 

537 

6 7 

721 
   

8 9 

     

0 

    3 
    9 
  38 
  67 Order was:     3 

                   9 
                   721 
        537 
                     38 
        143 
                     67 
                   478 
   

1
  

2 

721 

3 

537 
  38 

4 

143 

5 6 

  67 

7 

478 
   

8 9 

     

0 

    3 
    9 

Analysis 
Input size: n 
Number of buckets = Radix: B 
Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 
– Example: Strings of English letters up to length 15 

• Run-time proportional to: 15*(52 + n)  
•  This is less than n log n only if n > 33,000 
• Of course, cross-over point depends on constant factors of 

the implementations 
– And radix sort can have poor locality properties 
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Sorting massive data 
 

• Need sorting algorithms that minimize disk/tape access time: 
– Quicksort and Heapsort both jump all over the array, leading to 

expensive random disk accesses 
– Mergesort scans linearly through arrays, leading to (relatively) 

efficient sequential disk access 
 

• Mergesort is the basis of massive sorting 
 

• Mergesort can leverage multiple disks 
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Last Slide on Sorting 
• Simple O(n2) sorts can be fastest for small n 

– Selection sort, Insertion sort (latter linear for mostly-sorted) 
– Good for “below a cut-off” to help divide-and-conquer sorts 

• O(n log n) sorts 
– Heap sort, in-place but not stable nor parallelizable 
– Merge sort, not in place but stable and works as external sort 
– Quick sort, in place but not stable and O(n2) in worst-case 

• Often fastest, but depends on costs of comparisons/copies 
• �� (n log n) is worst-case and average lower-bound for sorting by 

comparisons 
• Non-comparison sorts 

– Bucket sort good for small number of possible key values 
– Radix sort uses fewer buckets and more phases 

• Best way to sort?  It depends! 
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