

CSE373: Data Structures & Algorithms Lecture 20: Beyond Comparison Sorting

Dan Grossman Fall 2013

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

How Fast Can We Sort?

- Heapsort & mergesort have O(n log n) worst-case running time
- Quicksort has O(n log n) average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 - Instead: we know that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A General View of Sorting

- Assume we have n elements to sort
 - For simplicity, assume none are equal (no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, n=3
 a[0]<a[1]<a[2]<a[2]<a[1]<a[1]<a[0]<a[2]<a[0]<a[1]<a[1]<a[0]<a[0]<a[1]<a[2]<a[0]<a[1]<a[0]
- In general, n choices for least element, n-1 for next, n-2 for next, ...
 - n(n-1)(n-2)...(2)(1) = n! possible orderings

Counting Comparisons

- So every sorting algorithm has to "find" the right answer among the n! possible answers
 - Starts "knowing nothing", "anything is possible"
 - Gains information with each comparison
 - Intuition: Each comparison can at best eliminate half the remaining possibilities
 - Must narrow answer down to a single possibility
- What we can show:
 - Any sorting algorithm must do at least $(1/2)n\log n (1/2)n$ (which is $\Omega(n \log n)$) comparisons
 - Otherwise there are at least two permutations among the n!
 possible that cannot yet be distinguished, so the algorithm
 would have to guess and could be wrong [incorrect algorithm]

Optional: Counting Comparisons

- Don't know what the algorithm is, but it cannot make progress without doing comparisons
 - Eventually does a first comparison "is a < b?"
 - Can use the result to decide what second comparison to do
 - Etc.: comparison k can be chosen based on first k-1 results
- Can represent this process as a decision tree
 - Nodes contain "set of remaining possibilities"
 - Root: None of the n! options yet eliminated
 - Edges are "answers from a comparison"
 - The algorithm does not actually build the tree; it's what our proof uses to represent "the most the algorithm could know so far" as the algorithm progresses

Optional: One Decision Tree for n=3

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree

Optional: What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
 - (We assume no duplicate elements)
 - (Would have 1 outcome if algorithm asks redundant questions)
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a different leaf
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n! leaves
 - So no algorithm can have worst-case running time better than the height of a tree with n! leaves
 - Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Optional: Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with n! leaves
 - A comparison sort could be worse than this height, but it cannot be better
- Now: a binary tree with n! leaves has height $\Omega(n \log n)$
 - Height could be more, but cannot be less
 - Factorial function grows very quickly
- Conclusion: Comparison sorting is Ω ($n \log n$)
 - An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

Optional: Height lower bound

- The height of a binary tree with L leaves is at least $log_2 L$
- So the height of our decision tree, *h*:

```
property of binary trees
h \ge \log_2(n!)
  = log_2 (n*(n-1)*(n-2)...(2)(1))
                                                    definition of factorial
  = \log_2 n + \log_2 (n-1) + ... + \log_2 1 property of logarithms
 \geq \log_2 n + \log_2 (n-1) + ... + \log_2 (n/2) drop smaller terms (\geq 0)
  \geq \log_2(n/2) + \log_2(n/2) + ... + \log_2(n/2) shrink terms to \log_2(n/2)
  = (n/2) \log_2 (n/2)
                                                   arithmetic
  = (n/2)(\log_2 n - \log_2 2)
                                                    property of logarithms
  = (1/2) n \log_2 n - (1/2) n
                                                    arithmetic
  "=" \Omega (n \log n)
```

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array							
1	3						
2	1						
3	2						
4	2						
5	3						

• Example:

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

- Overall: O(n+K)
 - Linear in n, but also linear in K
 - $-\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
 - We don't spend time doing comparisons of duplicates
- Bad when K is much larger than n
 - Wasted space; wasted time during linear O(K) pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren't just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in O(1) (at beginning, or keep pointer to last element)

Example: Movie ratings;
 scale 1-5;1=bad, 5=excellent
 Input=
 5: Casablanca

3: Harry Potter movies

5: Star Wars Original

Trilogy

1: Rocky V

- •Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- •Easy to keep 'stable'; Casablanca still before Star Wars

Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit
 - Keeping sort stable
 - Do one pass per digit
 - Invariant: After k passes (digits), the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

Example

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

Radix = 10

0	1	2	3	4	5	6	7	8	9		
3		721	537	143		67	478				
9			38								

Second pass:

stable bucket sort by tens digit

Fall 2013

CSE373: Data Structures & Algorithms

Example

0	1	2	3	4	5	6	7	8	9
3 9		721	537 38	143		67	478		

Radix = 10

Order was:

Third pass:

stable bucket sort by 100s digit

478537721

38

67

143

CSE373: Data Structures & Algorithms

Analysis

Input size: n

Number of buckets = Radix: B

Number of passes = "Digits": *P*

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Run-time proportional to: 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Mergesort is the basis of massive sorting
- Mergesort can leverage multiple disks

Last Slide on Sorting

- Simple O(n²) sorts can be fastest for small n
 - Selection sort, Insertion sort (latter linear for mostly-sorted)
 - Good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- Ω ($n \log n$) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of possible key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!