The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
How Fast Can We Sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
 - Instead: we know that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison
A General View of Sorting

• Assume we have \(n \) elements to sort
 – For simplicity, assume none are equal (no duplicates)

• How many permutations of the elements (possible orderings)?

• Example, \(n=3 \)

 \[
 \begin{align*}
 \end{align*}
 \]

• In general, \(n \) choices for least element, \(n-1 \) for next, \(n-2 \) for next, …
 – \(n(n-1)(n-2)\ldots(2)(1) = n! \) possible orderings
Counting Comparisons

• So every sorting algorithm has to “find” the right answer among the $n!$ possible answers
 – Starts “knowing nothing”, “anything is possible”
 – Gains information with each comparison
 – Intuition: Each comparison can at best eliminate half the remaining possibilities
 – Must narrow answer down to a single possibility

• What we can show:
 Any sorting algorithm must do at least $(1/2)n \log n - (1/2)n$
 (which is $\Omega(n \log n)$) comparisons
 – Otherwise there are at least two permutations among the $n!$ possible that cannot yet be distinguished, so the algorithm would have to guess and could be wrong [incorrect algorithm]
Optional: Counting Comparisons

- Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 - Eventually does a first comparison “is a < b ?”
 - Can use the result to decide what second comparison to do
 - Etc.: comparison k can be chosen based on first $k-1$ results

- Can represent this process as a decision tree
 - Nodes contain “set of remaining possibilities”
 - Root: None of the $n!$ options yet eliminated
 - Edges are “answers from a comparison”
 - The algorithm does not actually build the tree; it’s what our proof uses to represent “the most the algorithm could know so far” as the algorithm progresses
Optional: One Decision Tree for n=3

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree
Optional: Example if \(a < c < b \)

Possible orders:
- \(a < b < c, \ b < c < a, \ a < c < b, \ c < a < b, \ b < a < c, \ c < b < a \)
- \(a < b < c, \ b < c < a, \ c < b < a \)
- \(a < b < c, \ b < c < a, \ c < b < a \)
- \(a < b < c, \ b < c < a, \ c < b < a \)
- \(a < b < c, \ b < c < a, \ c < b < a \)
- \(a < b < c, \ b < c < a, \ c < b < a \)

Actual order:
- \(a < b < c \)
- \(a < c < b \)
- \(b < c < a \)
- \(b < a < c \)
Optional: What the Decision Tree Tells Us

• A binary tree because each comparison has 2 outcomes
 – (We assume no duplicate elements)
 – (Would have 1 outcome if algorithm asks redundant questions)

• Because any data is possible, any algorithm needs to ask enough questions to produce all \(n! \) answers
 – Each answer is a different leaf
 – So the tree must be big enough to have \(n! \) leaves
 – Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with \(n! \) leaves
 – So no algorithm can have worst-case running time better than the height of a tree with \(n! \) leaves

• Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm’s decision tree
Optional: Where are we

• Proven: No comparison sort can have worst-case running time better than the height of a binary tree with $n!$ leaves
 – A comparison sort could be worse than this height, but it cannot be better

• Now: a binary tree with $n!$ leaves has height $\Omega(n \log n)$
 – Height could be more, but cannot be less
 – Factorial function grows very quickly

• Conclusion: Comparison sorting is $\Omega(n \log n)$
 – An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time
Optional: Height lower bound

- The height of a binary tree with \(L \) leaves is at least \(\log_2 L \)
- So the height of our decision tree, \(h \):

\[
h \geq \log_2 (n!)
\]

\[
= \log_2 (n*(n-1)*(n-2)\ldots(2)(1))
\]

\[
= \log_2 n + \log_2 (n-1) + \ldots + \log_2 1
\]

\[
\geq \log_2 n + \log_2 (n-1) + \ldots + \log_2 (n/2)
\]

\[
\geq \log_2 (n/2) + \log_2 (n/2) + \ldots + \log_2 (n/2)
\]

\[
= (n/2)\log_2 (n/2)
\]

\[
= (n/2)(\log_2 n - \log_2 2)
\]

\[
= (1/2)n\log_2 n - (1/2)n
\]

\[
\Omega (n \log n)
\]
The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets

How???
- Change the model – assume more than “compare(a,b)”
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count</th>
<th>array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

- Example:
 - $K=5$
 - input: (5,1,3,4,3,2,1,1,5,4,5)
 - output: 1,1,1,2,3,3,4,4,5,5,5
Analyzing Bucket Sort

- Overall: $O(n+K)$
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort

- Good when K is smaller (or not much larger) than n
 - We don’t spend time doing comparisons of duplicates

- Bad when K is much larger than n
 - Wasted space; wasted time during linear $O(K)$ pass

- For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

• Most real lists aren’t just keys; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, insert in $O(1)$ (at beginning, or keep pointer to last element)

<table>
<thead>
<tr>
<th>count array</th>
<th>Rocky V</th>
<th>Harry Potter</th>
<th>Casablanca</th>
<th>Star Wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Example: Movie ratings; scale 1-5; 1=bad, 5=excellent
- Input=
 - 5: Casablanca
 - 3: Harry Potter movies
 - 5: Star Wars Original Trilogy
 - 1: Rocky V

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
• Easy to keep ‘stable’; Casablanca still before Star Wars

Radix sort

• Radix = “the base of a number system”
 – Examples will use 10 because we are used to that
 – In implementations use larger numbers
 • For example, for ASCII strings, might use 128

• Idea:
 – Bucket sort on one digit at a time
 • Number of buckets = radix
 • Starting with least significant digit
 • Keeping sort stable
 – Do one pass per digit
 – Invariant: After k passes (digits), the last k digits are sorted

• Aside: Origins go back to the 1890 U.S. census
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>721</td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td>537</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>478</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input: 478 537 9 721 3 38 143 67

First pass:
bucket sort by ones digit

Order now: 721 3 143 537 67 478 38 9
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>537</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>478</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>721</td>
<td>537</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Order was: 721 143 537 478 67 38 9

Second pass:

stable bucket sort by tens digit

Order now: 3 9 721 537 38 143 67 478 9
Example

Radix = 10

Third pass: stable bucket sort by 100s digit
Analysis

Input size: \(n \)
Number of buckets = Radix: \(B \)
Number of passes = “Digits”: \(P \)

Work per pass is 1 bucket sort: \(O(B+n) \)

Total work is \(O(P(B+n)) \)

Compared to comparison sorts, sometimes a win, but often not
 – Example: Strings of English letters up to length 15
 • Run-time proportional to: \(15*(52 + n) \)
 • This is less than \(n \log n \) only if \(n > 33,000 \)
 • Of course, cross-over point depends on constant factors of the implementations
 – And radix sort can have poor locality properties
Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

- Mergesort is the basis of massive sorting

- Mergesort can leverage multiple disks
Last Slide on Sorting

• Simple $O(n^2)$ sorts can be fastest for small n
 – Selection sort, Insertion sort (latter linear for mostly-sorted)
 – Good for “below a cut-off” to help divide-and-conquer sorts
• $O(n \log n)$ sorts
 – Heap sort, in-place but not stable nor parallelizable
 – Merge sort, not in place but stable and works as external sort
 – Quick sort, in place but not stable and $O(n^2)$ in worst-case
 • Often fastest, but depends on costs of comparisons/copies
• $\Omega \left(n \log n \right)$ is worst-case and average lower-bound for sorting by comparisons
• Non-comparison sorts
 – Bucket sort good for small number of possible key values
 – Radix sort uses fewer buckets and more phases
• Best way to sort? It depends!