CSE373: Data Structures and Algorithms

Lecture 2: Math Review; Algorithm Analysis

Dan Grossman
Fall 2013

Today

* Finish discussing stacks and queues

* Review math essential to algorithm analysis
— Proof by induction
— Powers of 2
— Binary numbers
— EXxponents and logarithms

« Begin analyzing algorithms
— Using asymptotic analysis (continue next time)

Fall 2013 CSE373: Data Structures & Algorithms

Mathematical induction

Suppose P(n) is some predicate (mentioning integer n)

— Example:n2n/2 +1

To prove P(n) for all integers n = n,, it suffices to prove

1. P(ng) — called the “basis” or “base case”

2. If P(k), then P(k+1) — called the “induction step” or “inductive case”
Why we will care:

To show an algorithm is correct or has a certain running time no
matter how big a data structure or input value is

(Our “n” will be the data structure or input size.)

Fall 2013 CSE373: Data Structures & Algorithms 3

Example

P(n) = “the sum of the first n powers of 2 (starting at 0) is 2"-1”

Theorem: P(n) holds for alln =1
Proof: By induction on n
« Base case: n=1. Sum of first 1 power of 2 is 2° , which equals 1.
And for n=1, 2"-1 equals 1.
* Inductive case:
— Assume the sum of the first k powers of 2 is 2k-1
— Show the sum of the first (k+1) powers of 2 is 2k+1-1
Using assumption, sum of the first (k+1) powers of 2 is
(2k_1) + 2(k+1)-1 = (2k_1) + 2k = 2k+1_1

Fall 2013 CSE373: Data Structures & Algorithms

Powers of 2

 Abitis 0 or 1 (just two different “letters” or “symbols”)
« A sequence of n bits can represent 2" distinct things
— For example, the numbers O through 2"-1
« 210is 1024 (“about a thousand”, kilo in CSE speak)
« 220js “about a million”, mega in CSE speak
« 230js “about a billion”, giga in CSE speak
Java: an int is 32 bits and signed, so “max int” is “about 2 billion”
a long is 64 bits and signed, so “max long” is 263-1

Fall 2013 CSE373: Data Structures & Algorithms

Therefore...

Could give a unique id to...

Every person in the U.S. with 29 bits

Every person in the world with 33 bits

Every person to have ever lived with 38 bits (estimate)

Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated,
do you think you could guess it?

Fall 2013 CSE373: Data Structures & Algorithms

Logarithms and Exponents

« Since so much is binary in CS log almost always means log,

« Definition: log, X = y If x = 2¥
* S0, log, 1,000,000 = “a little under 20"
« Just as exponents grow very quickly, logarithms grow very slowly

1200000

1000000

See Excel file 800000
for pIOt data - 600000
play Wlth Itl 400000

200000

0 -
1234567 8 91011121314151617181920

Fall 2013 CSE373: Data Structures & Algorithms 7

Logarithms and Exponents

« Since so much is binary log in CS almost always means log,

« Definition: log, x = yif x = 2¥

* S0, log, 1,000,000 = “a little under 20”

« Just as exponents grow very quickly, logarithms grow very slowly

35

30 F

25 /
See Excel file o /.
for plot data — . pd =2

/ logn
A

10 : i 1A

0

play with it!

Fall 2013 CSE373: Data Structures & Algorithms 8

Logarithms and Exponents

« Since so much is binary log in CS almost always means log,

« Definition: log, X = yif x = 2¥
* S0, log, 1,000,000 = “a little under 20"
« Just as exponents grow very quickly, logarithms grow very slowly

25

20

See Excel file s
for plot data — ——n
play with it! v logn

5

0__I T T T T T T T T T T T T T T T T T T 1
123 456 7 8 910111213141516171819 20

Fall 2013 CSE373: Data Structures & Algorithms 9

Logarithms and Exponents

« Since so much is binary log in CS almost always means log,

« Definition: log, X = yif x = 2¥
* S0, log, 1,000,000 = “a little under 20"
« Just as exponents grow very quickly, logarithms grow very slowly

3000

2500

See Excel file 2000
for plot data — 1500 e
play with it! 1000 —8—nA)

500

0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fall 2013 CSE373: Data Structures & Algorithms 10

Properties of logarithms

log(A*B) = log A + log B
— S0 log(N¥)= k log N

log(A/B) = log A - log B

log(log x) Iswritten log log x
— Grows as slowly as 22 grows quickly

(log x) (log x) is written log?x
— Itis greaterthan 1log xforallx > 2
— Itis not the same as 1log log x

Fall 2013 CSE373: Data Structures & Algorithms

11

Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”
— And we are about to stop worrying about constant factors!
— In particular, log, x = 3.22 log,;, X
— In general,
logy x = (log, x) / (log, B)

Fall 2013 CSE373: Data Structures & Algorithms 12

Floor and ceiling

|_XJ Floor function: the largest integer < X

2.7 |=2 |-2.7 |=-3 12 |=2

|_X_| Ceiling function: the smallest integer > X

2.3]|=3 [-2.3 |=-2 2|=2

Fall 2013 CSE373: Data Structures & Algorithms 13

Floor and ceiling properties

1. X-1<|X]|<X
2. X<[X]<X+1
3. |n2 |+[n/2]=n if nis an integer

Fall 2013 CSE373: Data Structures & Algorithms

14

Algorithm Analysis

As the “size” of an algorithm’s input grows
(integer, length of array, size of queue, etc.):
— How much longer does the algorithm take (time)
— How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only
“which curve we are like”

Separate issue: Algorithm correctness — does it produce the right
answer for all inputs

— Usually more important, naturally

Fall 2013 CSE373: Data Structures & Algorithms 15

Example

« What does this pseudocode return?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

* Correctness: Forany N 20, it returns...

Fall 2013 CSE373: Data Structures & Algorithms

Example

 What does this pseudocode return?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

» Correctness: Forany N = 0, it returns 3N(N+1)/2

* Proof: By induction on n
— P(n) = after outer for-loop executes n times, x holds
3n(n+1)/2
— Base: n=0, returns O
— Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
= (Bk(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

Fall 2013 CSE373: Data Structures & Algorithms

17

Example

 How long does this pseudocode run?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

* Running time: Forany N = 0,
— Assignments, additions, returns take “1 unit time”
— Loops take the sum of the time for their iterations

* So: 2 + 2*(number of times inner loop runs)
— And how many times is that...

Fall 2013 CSE373: Data Structures & Algorithms

18

Example

How long does this pseudocode run?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

The total number of loop iterations is N*(N+1)/2
— This is a very common loop structure, worth memorizing
— Proof is by induction on N, known for centuries
— This is proportional to N? , and we say O(N?), “big-Oh of”

« For large enough N, the N and constant terms are
Irrelevant, as are the first assignment and return

« See plot... N*(N+1)/2 vs. just N2/2

Fall 2013 CSE373: Data Structures & Algorithms

19

Lower-order terms don’t matter

N*(N+1)/2 vs. just N?%/2

14000000
[
12000000 -
-"5.
£
10000000 .
/(f'
8000000 -
r
o
4 =——n*(n+1}/2
6000000 y (n+1)/
y a2 (n"2)/2
4000000 /,_(-
I,/{
2000000 —tt
vfii
VVV‘I‘
0 *vv‘tv‘.‘.wII\II\IIIII\II\II\II\II\II\IIHIHII\II\II\I
e T o T e T e T s R . T o [o Y s [s s Y s [s I o I o I .
oo oo oo oo oocoooooo
MW o N WD S~ O M WO W 00
o B I T o Y o A A 0 O ST o T o T S S
Fall 2013

0.012

0.01

0.008

0.006

0.004

0.002

relative difference

relative difference

CSE373: Data Structures & Algorithms 20

N

for i=1 to N do

Geometric interpretation

| = N*N/2+N/2
1

for j=1 to i do
// small work

« Area of square: N*N
« Area of lower triangle of square: N*N/2
« Extra area from squares crossing the diagonal: N*1/2

* As N grows, fraction of “extra area” compared to lower triangle
goes to zero (becomes insignificant)

Fall 2013 CSE373: Data Structures & Algorithms 21

Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic

O(n) linear

O(n 1og n) “n logn’

0O(n?) quadratic

O(n3d) cubic

O(n¥) polynomial (where is k is any constant)
O(k") exponential (where k is any constant > 1)

Pet peeve: “exponential” does not mean “grows really fast”, it
means “grows at rate proportional to k" for some k>1"

— A savings account accrues interest exponentially (k=1.017?)
— If you don’t know k, you probably don’t know it's exponential

Fall 2013 CSE373: Data Structures & Algorithms 22

