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Today

* Finish discussing stacks and queues

* Review math essential to algorithm analysis
— Proof by induction
— Powers of 2
— Binary numbers
— EXxponents and logarithms

« Begin analyzing algorithms
— Using asymptotic analysis (continue next time)
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Mathematical induction

Suppose P(n) is some predicate (mentioning integer n)

— Example:n2n/2 +1

To prove P(n) for all integers n = n,, it suffices to prove

1. P(ng) — called the “basis” or “base case”

2. If P(k), then P(k+1) — called the “induction step” or “inductive case”
Why we will care:

To show an algorithm is correct or has a certain running time  no
matter how big a data structure or input value is

(Our “n” will be the data structure or input size.)
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Example

P(n) = “the sum of the first n powers of 2 (starting at 0) is 2"-1”

Theorem: P(n) holds for alln =1
Proof: By induction on n
« Base case: n=1. Sum of first 1 power of 2 is 2° , which equals 1.
And for n=1, 2"-1 equals 1.
* Inductive case:
— Assume the sum of the first k powers of 2 is 2k-1
— Show the sum of the first (k+1) powers of 2 is 2k+1-1
Using assumption, sum of the first (k+1) powers of 2 is
(2k_1) + 2(k+1)-1 = (2k_1) + 2k = 2k+1_1
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Powers of 2

 Abitis 0 or 1 (just two different “letters” or “symbols”)
« A sequence of n bits can represent 2" distinct things
— For example, the numbers O through 2"-1
« 210is 1024 (“about a thousand”, kilo in CSE speak)
« 220js “about a million”, mega in CSE speak
« 230js “about a billion”, giga in CSE speak
Java: an int is 32 bits and signed, so “max int” is “about 2 billion”
a long is 64 bits and signed, so “max long” is 263-1
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Therefore...

Could give a unique id to...

Every person in the U.S. with 29 bits

Every person in the world with 33 bits

Every person to have ever lived with 38 bits (estimate)

Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated,
do you think you could guess it?
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Logarithms and Exponents

« Since so much is binary in CS log almost always means log,

« Definition: log, X = y If x = 2¥
* S0, log, 1,000,000 = “a little under 20"
« Just as exponents grow very quickly, logarithms grow very slowly
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Logarithms and Exponents

« Since so much is binary log in CS almost always means log,

« Definition: log, x = yif x = 2¥

* S0, log, 1,000,000 = “a little under 20”

« Just as exponents grow very quickly, logarithms grow very slowly
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Logarithms and Exponents

« Since so much is binary log in CS almost always means log,

« Definition: log, X = yif x = 2¥
* S0, log, 1,000,000 = “a little under 20"
« Just as exponents grow very quickly, logarithms grow very slowly
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Logarithms and Exponents

« Since so much is binary log in CS almost always means log,

« Definition: log, X = yif x = 2¥
* S0, log, 1,000,000 = “a little under 20"
« Just as exponents grow very quickly, logarithms grow very slowly
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Properties of logarithms

log(A*B) = log A + log B
— S0 log(N¥)= k log N

log(A/B) = log A - log B

log(log x) Iswritten log log x
— Grows as slowly as 22 grows quickly

(log x) (log x) is written log?x
— Itis greaterthan 1log xforallx > 2
— Itis not the same as 1log log x
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Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”
— And we are about to stop worrying about constant factors!
— In particular, log, x = 3.22 log,;, X
— In general,
logy x = (log, x) / (log, B)

Fall 2013 CSE373: Data Structures & Algorithms 12



Floor and ceiling

|_XJ Floor function: the largest integer < X

2.7 |=2 |-2.7 |=-3 12 |=2

|_X_| Ceiling function: the smallest integer > X

2.3 ]|=3 [-2.3 |=-2 2|=2
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Floor and ceiling properties

1. X-1<|X]|<X
2. X<[X]<X+1
3. |n2 |+[n/2 ]=n if nis an integer
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Algorithm Analysis

As the “size” of an algorithm’s input grows
(integer, length of array, size of queue, etc.):
— How much longer does the algorithm take (time)
— How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only
“which curve we are like”

Separate issue: Algorithm correctness — does it produce the right
answer for all inputs

— Usually more important, naturally
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Example

« What does this pseudocode return?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

* Correctness: Forany N 20, it returns...
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Example

 What does this pseudocode return?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

» Correctness: Forany N = 0, it returns 3N(N+1)/2

* Proof: By induction on n
— P(n) = after outer for-loop executes n times, x holds
3n(n+1)/2
— Base: n=0, returns O
— Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
= (Bk(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2
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Example

 How long does this pseudocode run?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

* Running time: Forany N = 0,
— Assignments, additions, returns take “1 unit time”
— Loops take the sum of the time for their iterations

* So: 2 + 2*(number of times inner loop runs)
— And how many times is that...
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Example

How long does this pseudocode run?
x :=0;
for i=1 to N do
for j=1 to i do
X :=x + 3;
return x;

The total number of loop iterations is N*(N+1)/2
— This is a very common loop structure, worth memorizing
— Proof is by induction on N, known for centuries
— This is proportional to N? , and we say O(N?), “big-Oh of”

« For large enough N, the N and constant terms are
Irrelevant, as are the first assignment and return

« See plot... N*(N+1)/2 vs. just N2/2
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Lower-order terms don’t matter

N*(N+1)/2 vs. just N?%/2
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N

for i=1 to N do

Geometric interpretation

| = N*N/2+N/2
1

for j=1 to i do
// small work

« Area of square: N*N
« Area of lower triangle of square: N*N/2
« Extra area from squares crossing the diagonal: N*1/2

* As N grows, fraction of “extra area” compared to lower triangle
goes to zero (becomes insignificant)
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Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic

O(n) linear

O(n 1og n) “n logn’

0O(n?) quadratic

O(n3d) cubic

O(n¥) polynomial (where is k is any constant)
O(k") exponential (where k is any constant > 1)

Pet peeve: “exponential” does not mean “grows really fast”, it
means “grows at rate proportional to k" for some k>1"

— A savings account accrues interest exponentially (k=1.017?)
— If you don’t know k, you probably don’t know it's exponential
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