CSE373: Data Structures and Algorithms
Lecture 2: Math Review; Algorithm Analysis

Dan Grossman
Fall 2013
Today

• Finish discussing stacks and queues

• Review math essential to algorithm analysis
 – Proof by induction
 – Powers of 2
 – Binary numbers
 – Exponents and logarithms

• Begin analyzing algorithms
 – Using asymptotic analysis (continue next time)
Mathematical induction

Suppose $P(n)$ is some predicate (mentioning integer n)

- Example: $n \geq n/2 + 1$

To prove $P(n)$ for all integers $n \geq n_0$, it suffices to prove

1. $P(n_0)$ – called the “basis” or “base case”
2. If $P(k)$, then $P(k+1)$ – called the “induction step” or “inductive case”

Why we will care:

To show an algorithm is correct or has a certain running time no matter how big a data structure or input value is

(Our “n” will be the data structure or input size.)
Example

\[P(n) = \text{“the sum of the first } n \text{ powers of 2 (starting at 0) is } 2^{n-1} \text{”} \]

Theorem: \(P(n) \) holds for all \(n \geq 1 \)

Proof: By induction on \(n \)

- Base case: \(n=1 \). Sum of first 1 power of 2 is \(2^0 \), which equals 1. And for \(n=1 \), \(2^n-1 \) equals 1.

- Inductive case:
 - Assume the sum of the first \(k \) powers of 2 is \(2^k-1 \)
 - Show the sum of the first \((k+1) \) powers of 2 is \(2^{k+1}-1 \)

Using assumption, sum of the first \((k+1) \) powers of 2 is

\[
2^k - 1 + 2^{(k+1)-1} = 2^k - 1 + 2^k = 2^{k+1} - 1
\]
Powers of 2

- A bit is 0 or 1 (just two different “letters” or “symbols”)
- A sequence of \(n \) bits can represent \(2^n \) distinct things
 - For example, the numbers 0 through \(2^{n-1} \)
- \(2^{10} \) is 1024 (“about a thousand”, kilo in CSE speak)
- \(2^{20} \) is “about a million”, mega in CSE speak
- \(2^{30} \) is “about a billion”, giga in CSE speak

Java: an int is 32 bits and signed, so “max int” is “about 2 billion”
 a long is 64 bits and signed, so “max long” is \(2^{63}-1 \)
Therefore…

Could give a unique id to…

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?
Logarithms and Exponents

- Since so much is binary in CS \log almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = \text{“a little under 20”}$
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Logarithms and Exponents

- Since so much is binary \log in CS almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = \text{“a little under 20”}$
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Logarithms and Exponents

• Since so much is binary \log in CS almost always means \log_2
• Definition: $\log_2 x = y$ if $x = 2^y$
• So, $\log_2 1,000,000 = \text{“a little under 20”}$
• Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Logarithms and Exponents

• Since so much is binary \log in CS almost always means \log_2
• Definition: $\log_2 x = y$ if $x = 2^y$
• So, $\log_2 1,000,000 = \text{“a little under 20”}$
• Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Properties of logarithms

• $\log(A \times B) = \log A + \log B$
 - So $\log(N^k) = k \log N$

• $\log(A/B) = \log A - \log B$

• $\log(\log x)$ is written $\log \log x$
 - Grows as slowly as 2^y grows quickly

• $(\log x)(\log x)$ is written $\log^2 x$
 - It is greater than $\log x$ for all $x > 2$
 - It is not the same as $\log \log x$
Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”

– And we are about to stop worrying about constant factors!

– In particular, \(\log_2 x = 3.22 \log_{10} x \)

– In general,

\[
\log_B x = \frac{\log_A x}{\log_A B}
\]
Floor and ceiling

\[\lfloor X \rfloor \quad \text{Floor function: the largest integer } \leq X \]

\[\lfloor 2.7 \rfloor = 2 \quad \lfloor -2.7 \rfloor = -3 \quad \lfloor 2 \rfloor = 2 \]

\[\lceil X \rceil \quad \text{Ceiling function: the smallest integer } \geq X \]

\[\lceil 2.3 \rceil = 3 \quad \lceil -2.3 \rceil = -2 \quad \lceil 2 \rceil = 2 \]
Floor and ceiling properties

1. \(X - 1 < \lfloor X \rfloor \leq X \)
2. \(X \leq \lceil X \rceil < X + 1 \)
3. \(\lceil n/2 \rceil + \lfloor n/2 \rfloor = n \) if \(n \) is an integer
Algorithm Analysis

As the “size” of an algorithm’s input grows (integer, length of array, size of queue, etc.):
 – How much longer does the algorithm take (time)
 – How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only “which curve we are like”

Separate issue: Algorithm correctness – does it produce the right answer for all inputs
 – Usually more important, naturally
Example

• What does this pseudocode return?
 \[
 x := 0; \\
 \text{for } i=1 \text{ to } N \text{ do} \\
 \quad \text{for } j=1 \text{ to } i \text{ do} \\
 \quad \quad x := x + 3; \\
 \text{return } x;
 \]

• Correctness: For any \(N \geq 0 \), it returns…
Example

• What does this pseudocode return?

x := 0;
 for i=1 to N do
 for j=1 to i do
 x := x + 3;
 return x;

• Correctness: For any N ≥ 0, it returns 3N(N+1)/2
• Proof: By induction on n
 – P(n) = after outer for-loop executes n times, x holds
 3n(n+1)/2
 – Base: n=0, returns 0
 – Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.
 Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
 = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2
Example

• How long does this pseudocode run?

  ```
  x := 0;
  for i=1 to N do
    for j=1 to i do
      x := x + 3;
  return x;
  ```

• Running time: For any $N \geq 0$,
 – Assignments, additions, returns take “1 unit time”
 – Loops take the sum of the time for their iterations

• So: $2 + 2 \times \text{(number of times inner loop runs)}$
 – And how many times is that…
Example

• How long does this pseudocode run?

 \[
 \begin{align*}
 &x := 0; \\
 &\text{for } i=1 \text{ to } N \text{ do} \\
 &\quad \text{for } j=1 \text{ to } i \text{ do} \\
 &\quad \quad x := x + 3; \\
 &\quad \text{return } x;
 \end{align*}
 \]

• The total number of loop iterations is \(N^*(N+1)/2\)
 – This is a very common loop structure, worth memorizing
 – Proof is by induction on \(N\), known for centuries
 – This is proportional to \(N^2\), and we say \(O(N^2)\), “big-Oh of”
 • For large enough \(N\), the \(N\) and constant terms are irrelevant, as are the first assignment and return
 • See plot… \(N^*(N+1)/2\) vs. just \(N^2/2\)
Lower-order terms don’t matter

\[N^*(N+1)/2 \text{ vs. just } N^2/2 \]
Geometric interpretation

\[
\sum_{i=1}^{N} i = \frac{N^2}{2} + \frac{N}{2}
\]

for \(i = 1 \) to \(N \) do
 for \(j = 1 \) to \(i \) do
 // small work

- Area of square: \(N^2 \)
- Area of lower triangle of square: \(\frac{N^2}{2} \)
- Extra area from squares crossing the diagonal: \(\frac{N}{2} \)
- As \(N \) grows, fraction of “extra area” compared to lower triangle goes to zero (becomes insignificant)
Big-O: Common Names

\(O(1) \) constant (same as \(O(k) \) for constant \(k \))
\(O(\log n) \) logarithmic
\(O(n) \) linear
\(O(n \log n) \) “n \log n”
\(O(n^2) \) quadratic
\(O(n^3) \) cubic
\(O(n^k) \) polynomial (where is \(k \) is any constant)
\(O(k^n) \) exponential (where \(k \) is any constant > 1)

Pet peeve: “exponential” does not mean “grows really fast”, it means “grows at rate proportional to \(k^n \) for some \(k>1 \)”
 - A savings account accrues interest exponentially (\(k=1.01 \)?)
 - If you don’t know \(k \), you probably don’t know it’s exponential