CSE373: Data Structures & Algorithms
Lecture 17: Minimum Spanning Trees

Dan Grossman
Fall 2013
Spanning Trees

- A simple problem: Given a connected undirected graph $G=(V,E)$, find a minimal subset of edges such that G is still connected
 - A graph $G_2=(V,E_2)$ such that G_2 is connected and removing any edge from E_2 makes G_2 disconnected
Observations

1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
 - So $|E| \geq |V| - 1$

4. A tree with $|V|$ nodes has $|V| - 1$ edges
 - So every solution to the spanning tree problem has $|V| - 1$ edges
Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A “phone tree” so everybody gets the message and no unnecessary calls get made
 - Bad example since would prefer a balanced tree

In most compelling uses, we have a *weighted* undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
 - Will do that next, after intuition from the simpler case
Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle
Spanning tree via DFS

spanning_tree(Graph G) {
 for each node i: i.marked = false
 for some node i: f(i)
}
f(Node i) {
 i.marked = true
 for each j adjacent to i:
 if(!j.marked) {
 add(i,j) to output
 f(j) // DFS
 }
}

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: \(O(|E|) \)
Example

Stack

\[f(1) \]

Output:
Example

Stack

\[f(1) \]
\[f(2) \]

Output: \((1,2)\)
Example

Stack
f(1)
f(2)
f(7)

Output: (1,2), (2,7)
Example

Stack
f(1)
f(2)
f(7)
f(5)

Output: (1,2), (2,7), (7,5)
Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)

Output: (1,2), (2,7), (7,5), (5,4)
Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3)
Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)
Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)
Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
 - Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:
- Depends on how quickly you can detect cycles
- Reconsider after the example
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output:
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1, 2), (3, 4), (5, 6), (5, 7), (1, 5), (1, 6), (2, 7), (2, 3), (4, 5), (4, 7)

Output: (1, 2), (3, 4), (5, 6), (5, 7), (1, 5)
Example

Edges in some arbitrary order:

\[(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)\]

Output: \((1,2), (3,4), (5,6), (5,7), (1,5)\)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we have $|V|-1$ edges
Cycle Detection

• To decide if an edge could form a cycle is $O(|V|)$ because we may need to traverse all edges already in the output.

• So overall algorithm would be $O(|V||E|)$.

• But there is a faster way we know: use union-find!
 – Initially, each item is in its own 1-element set
 – Union sets when we add an edge that connects them
 – Stop when we have one set
Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: \(u \) and \(v \) are connected in output-so-far

iff

\(u \) and \(v \) in the same set

- Initially, each node is in its own set
- When processing edge \((u,v)\):
 - If \(\text{find}(u) \) equals \(\text{find}(v) \), then do not add the edge
 - Else add the edge and \(\text{union}(\text{find}(u),\text{find}(v)) \)
 - \(O(|E|) \) operations that are almost \(O(1) \) amortized
Summary So Far

The spanning-tree problem
- Add nodes to partial tree approach is $O(|E|)$
- Add acyclic edges approach is almost $O(|E|)$
 - Using union-find “as a black box”

But really want to solve the minimum-spanning-tree problem
- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be $O(|E| \log |V|)$
Getting to the Point

Algorithm #1

Shortest-path is to Dijkstra’s Algorithm
as
Minimum Spanning Tree is to Prim’s Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm #2

Kruskal’s Algorithm for Minimum Spanning Tree is
Exactly our 2nd approach to spanning tree but process edges in cost order
Prim’s Algorithm Idea

Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. *Pick the edge with the smallest weight that connects “known” to “unknown.”*

Recall Dijkstra “picked edge with closest known distance to source”
 – That is not what we want here
 – Otherwise identical (!)
The Algorithm

1. For each node v, set $v.cost = \infty$ and $v.known = false$
2. Choose any node v
 a) Mark v as known
 b) For each edge (v, u) with weight w, set $u.cost = w$ and $u.prev = v$
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known and add $(v, v.prev)$ to output
 c) For each edge (v, u) with weight w,
 \[
 \text{if}(w < u.cost) \{
 u.cost = w;
 u.prev = v;
 \}
 \]
Example

A → B: 2
A → C: 1
B → D: 5
B → E: 1
C → D: 6
D → E: 5
D → F: 10
E → G: 3

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

![Graph Image]

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>
Example

![Graph](image)

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>5</td>
<td>D</td>
</tr>
</tbody>
</table>
Example

A

B

C

D

E

F

G

vertex	known?	cost	prev
A | Y | 0 |
B | | 2 | A
C | Y | 1 | D
D | Y | 1 | A
E | | 1 | D
F | | 2 | C
G | | 5 | D
Example

```
vertex  known?  cost  prev
A       Y       0     
B       1       E     
C       Y       1     D
D       Y       1     A
E       Y       1     D
F       2       C     
G       3       E     
```
Example

A typical graph with vertices labeled A to G and edges weighted as follows:

- A to B: 1
- A to C: 2
- A to D: 1
- B to C: 1
- B to D: 5
- B to E: 1
- C to D: 1
- C to E: 6
- D to E: 1
- D to F: 10
- E to G: 3

A table showing the known status, cost, and previous vertex:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Example

```
<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
```
Example

A B C D E F G

0 2 1 1 1 1 1 2
2 2 1 5 1 1 5 1
2 1 5 1 1 6 3 10

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Analysis

• Correctness ??
 – A bit tricky
 – Intuitively similar to Dijkstra

• Run-time
 – Same as Dijkstra
 – $O(|E| \log |V|)$ using a priority queue
 • Costs/priorities are just edge-costs, not path-costs
Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.
 - But now consider the edges in order by weight

So:
 - Sort edges: $O(|E| \log |E|)$ (next course topic)
 - Iterate through edges using union-find for cycle detection almost $O(|E|)$

Somewhat better:
 - Floyd’s algorithm to build min-heap with edges $O(|E|)$
 - Iterate through edges using union-find for cycle detection and deleteMin to get next edge $O(|E| \log |E|)$
 - Not better worst-case asymptotically, but often stop long before considering all edges
Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1
 - Consider next smallest edge \((u, v)\)
 - if \(\text{find}(u, v)\) indicates \(u\) and \(v\) are in different sets
 • output \((u, v)\)
 • \(\text{union}(\text{find}(u), \text{find}(v))\)

Recall invariant:
 \(u\) and \(v\) in same set if and only if connected in output-so-far
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest
Correctness

Kruskal’s algorithm is clever, simple, and efficient
– But does it generate a minimum spanning tree?
– How can we prove it?

First: it generates a spanning tree
– Intuition: Graph started connected and we added every edge that did not create a cycle
– Proof by contradiction: Suppose u and v are disconnected in Kruskal’s result. Then there’s a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost…
The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at some point during its execution.

Claim: F is a subset of one or more MSTs for the graph
– Therefore, once $|F| = |V| - 1$, we have an MST

Proof: By induction on $|F|$

Base case: $|F| = 0$: The empty set is a subset of all MSTs

Inductive case: $|F| = k + 1$: By induction, before adding the $(k+1)^{th}$ edge (call it e), there was some MST T such that $F - \{e\} \subseteq T$...
Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph

So far: $F - \{e\} \subseteq T$:

Two disjoint cases:
- If $\{e\} \subseteq T$: Then $F \subseteq T$ and we’re done
- Else e forms a cycle with some simple path (call it p) in T
 - Must be since T is a spanning tree
Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph

So far: $F\setminus\{e\} \subseteq T$ and e forms a cycle with $p \subseteq T$

- There must be an edge e_2 on p such that e_2 is not in F
 - Else Kruskal would not have added e

- Claim: $e_2.\text{weight} == e.\text{weight}$
Staying a subset of some MST

Claim: \(F \) is a subset of one or more MSTs for the graph

So far: \(F-\{e\} \subseteq T \)

- \(e \) forms a cycle with \(p \subseteq T \)
- \(e2 \) on \(p \) is not in \(F \)

- Claim: \(e2.\text{weight} = e.\text{weight} \)
 - If \(e2.\text{weight} > e.\text{weight} \), then \(T \) is not an MST because \(T-\{e2\}+\{e\} \) is a spanning tree with lower cost: contradiction
 - If \(e2.\text{weight} < e.\text{weight} \), then Kruskal would have already considered \(e2 \). It would have added it since \(T \) has no cycles and \(F-\{e\} \subseteq T \). But \(e2 \) is not in \(F \): contradiction
Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph

So far: $F\setminus \{e\} \subseteq T$
- e forms a cycle with $p \subseteq T$
- e_2 on p is not in F
- $e_2.\text{weight} == e.\text{weight}$

- Claim: $T\setminus \{e_2\} + \{e\}$ is an MST
 - It is a spanning tree because $p\setminus \{e_2\} + \{e\}$ connects the same nodes as p
 - It is minimal because its cost equals cost of T, an MST
- Since $F \subseteq T\setminus \{e_2\} + \{e\}$, F is a subset of one or more MSTs

Done