CSE373: Data Structures & Algorithms

Lecture 16: Software-Design Interlude —
Preserving Abstractions

Dan Grossman
Fall 2013

Motivation

» Essential: knowing available data structures and their trade-offs
— You're taking a whole course on it! ©

* However, you will rarely if ever re-implement these “in real life”
— Provided by libraries

« But the key idea of an abstraction arises all the time “in real life”
— Clients do not know how it is implemented
— Clients do not need to know
— Clients cannot “break the abstraction” no matter what they do

Fall 2013 CSE373: Data Structures & Algorithms 2

Interface vs. implementation

Recall the abstraction

* Provide a reusable interface without revealing implementation Clients: Data structure:
“not trusted by ADT new PQ(..)
* More difficult than it sounds due to aliasing and field-assignment implementer’ . Shoulq document how

— Some common bitfalls . - operations can be used

P e el and what is checked
Can perform any . (raising appropriate
+ So study it in terms of ADTs vs. data structures sequence of ADT | deleteMin(.) exceptions)

— Will use priority queues as example in lecture, but any ADT operations isEmpty () - E.g., fields not null

would do Can do anything ——

— Key aspect of grading your homework on graphs type-checker allows * If used correctly, correct
on any accessible priority queue for any client
objects » Client “cannot see” the

implementation

— E.g., binary min heap
Fall 2013 CSE373: Data Structures & Algorithms 3 Fall 2013 CSE373: Data Structures & Algorithms 4
Our example Our example

* A priority queue with to-do items, so earlier dates “come first”
— Simpler example than using Java generics
» Exact method names and behavior not essential to example

public class Date {
.. // some private fields (year, month, day)
public int getYear() {..}
public void setYear(int y) {..}
.. // more methods
}
public class ToDoItem {
.. // some private fields (date, description)
public void setDate(Date d) {..}
public void setDescription(String d) {..}
.. // more methods
}

// continued next slide..

Fall 2013 CSE373: Data Structures & Algorithms 5

* A priority queue with to-do items, so earlier dates “come first”
— Simpler example than using Java generics
» Exact method names and behavior not essential to example

public class Date { .. }
public class ToDoItem { .. }
public class ToDoPQ {
.. // some private fields (array, size, ..)
public ToDoPQ() {..}
void insert(ToDoItem t) {..}
ToDoItem deleteMin() {..}
boolean isEmpty () {..}

Fall 2013 CSE373: Data Structures & Algorithms 6

An obvious mistake

* Why we trained you to “mindlessly” make fields private:

public class ToDoPQ {
.. // other fields
public ToDoItem[] heap;
public ToDoPQ() {..}
void insert(ToDoItem t) {..}

}

// client:

Pg = new ToDoPQ() ;

pg.heap = null;

pq.insert(..); // likely exception

* Today’s lecture: private does not solve all your problems!
— Upcoming pitfalls can occur even with all private fields

Fall 2013 CSE373: Data Structures & Algorithms 7

Less obvious mistakes

public class ToDoPQ {
.. // all private fields
public ToDoPQ() {..}
void insert (ToDoItem i) {..}

}

// client:

ToDoPQ Pg = new ToDoPQ() ;

ToDoItem i = new ToDoItem(..);
Pg.insert (i) ;

i.setDescription(“some different thing”) ;
pdg.insert(i); // same object after update
x = deleteMin(); // x’s description???

y = deleteMin(); // y’s description???

Fall 2013 CSE373: Data Structures & Algorithms

Aliasing and mutation

date:
description: “...”

» Client was able to update something inside the abstraction
because client had an alias to it!

— Itis too hard to reason about and document what should
happen, so better software designs avoid the issue!

Fall 2013 CSE373: Data Structures & Algorithms 9

More bad clients

ToDoPQ Pg new ToDoPQ() ;
ToDoItem il = new ToDoItem(..); // year 2013
ToDoItem i2 = new ToDoIltem(..); // year 2014
pPg.insert(il) ;
pPg.insert(i2) ;
il.setDate(..); // year 2015
x = deleteMin(); // “wrong” (???) item?
// What date does returned item have???

Fall 2013 CSE373: Data Structures & Algorithms

More bad clients

i2 date:
\@Jn:

date: —
descriptid

A |

Fall 2013 CSE373: Data Structures & Algorithms 11

More bad clients

P9 = new ToDoPQ() ;

ToDoItem il = new ToDoItem(..) ;
pg.insert(il) ;

il.setDate (null) ;

ToDoItem i2 = new ToDoItem(..) ;
pg.insert(i2); // NullPointerException???

Get exception inside data-structure code even if insert did a
careful check that the date in the ToDoItem is not null
* Bad client later invalidates the check

Fall 2013 CSE373: Data Structures & Algorithms

The general fix

» Avoid aliases into the internal data (the “red arrows”) by copying
objects as needed

— Do not use the same objects inside and outside the
abstraction because two sides do not know all mutation
(field-setting) that might occur

— “Copy-in-copy-out”

‘ AfWStauen"ﬁ: public class ToDoPQ {

void insert(ToDoItem i) {
ToDoItem internal i =
new ToDoItem(i.date,i.description) ;
.. // use only the internal object
}

Fall 2013 CSE373: Data Structures & Algorithms 13

Must copy the object

public class ToDoPQ {

void insert(ToDoItem i) {
ToDoItem internal i =
new ToDoItem(i.date,i.description);
.. // use only the internal object
}
}

» Notice this version accomplishes nothing

— Still the alias to the object we got from the client:
public class ToDoPQ {

void insert(ToDoItem i) {
ToDoItem internal i = i;
.. // internal i refers to same object

}

Fall 2013 CSE373: Data Structures & Algorithms 14

Copying works...

date:

i _—~ _description: “...” description: “...”

pq\

ToDoItem i = new ToDoItem(..) ;

Pg = new ToDoPQ() ;

pPg.insert (i) ;

i.setDescription(“some different thing”);
pg.insert (i) ;

deleteMin() ;

deleteMin() ;

x =
y =

Fall 2013 CSE373: Data Structures & Algorithms 15

Didin’t do enough copying yet

date:

i description: “...”

_—"_description: “...”

pq\

Date d = new Date(..)

ToDoItem i = new ToDoItem(d,“buy beer”) ;
P9 = new ToDoPQ() ;

Pq.insert (i) ;

d.setYear (2015) ;

Fall 2013 CSE373: Data Structures & Algorithms 16

Deep copying

» For copying to work fully, usually need to also make copies of all
objects referred to (and that they refer to and so on...)

— All the way down to int, double, String, ...
— Called deep copying (versus our first attempt shallow-copy)

* Rule of thumb: Deep copy of things passed into abstraction

public class ToDoPQ {

void insert(ToDoItem i) {
ToDoItem internal i =
new ToDoItem(new Date(..),
i.description) ;
.. // use only the internal object

}

Fall 2013 CSE373: Data Structures & Algorithms 17

Constructors take input too

* General rule: Do not “trust” data passed to constructors
— Check properties and make deep copies

» Example: Floyd’s algorithm for buildHeap should:

— Check the array (e.g., for null values in fields of objects or
array positions)

— Make a deep copy: new array, new objects
public class ToDoPQ {
// a second constructor that uses
// Floyd’'s algorithm, but good design

// deep-copies the array (and its contents)
void PriorityQueue (ToDoItem[] items) ({

}

Fall 2013 CSE373: Data Structures & Algorithms 18

That was copy-in, now copy-out...

* So we have seen:

— Need to deep-copy data passed into abstractions to avoid
pain and suffering

¢ Next:

— Need to deep-copy data passed out of abstractions to avoid
pain and suffering (unless data is “new” or no longer used in
abstraction)

¢ Then:

— If objects are immutable (no way to update fields or things
they refer to), then copying unnecessary

Fall 2013 CSE373: Data Structures & Algorithms 19

deleteMin is fine

public class ToDoPQ {

ToDoItem deleteMin() {
ToDoItem ans = heap[0];
.. // algorithm involving percolateDown
return ans;

}

» Does not create a “red arrow” because object returned is no
longer part of the data structure

» Returns an alias to object that was in the heap, but now it is not,
so conceptual “ownership” “transfers” to the client

Fall 2013 CSE373: Data Structures & Algorithms 20

getMin needs copying

date:
description: “...”

A |

public class ToDoPQ {

ToDoItem getMin() {

int ans = heap[0];
return ans;

}

ToDoItem i = new ToDoItem(..);
Pg = new ToDoPQ() ;

X = pq.getMin() ;
x.setDate(..) ;

}

* Uh-oh, creates a “red arrow”
Fall 2013 CSE373: Data Structures & Algorithms 21

The fix

» Just like we deep-copy objects from clients before adding to our
data structure, we should deep-copy parts of our data structure
and return the copies to clients

» Copy-in and copy-out

public class ToDoPQ {
ToDoItem getMin() {
int ans = heap[0];
return new ToDoItem(new Date(..),
ans.description) ;

Fall 2013 CSE373: Data Structures & Algorithms 22

Less copying

» (Deep) copying is one solution to our aliasing problems

* Another solution is immutability
— Make it so nobody can ever change an object or any other
objects it can refer to (deeply)
— Allows “red arrows”, but immutability makes them harmless

* InJava, a £inal field cannot be updated after an object is
constructed, so helps ensure immutability
— But final is a “shallow” idea and we need “deep”
immutability

Fall 2013 CSE373: Data Structures & Algorithms 23

This works

public class Date {
private final int year;
private final String month;
private final String day;
}
public class ToDoItem {
private final Date date;
private final String description;
}
public class ToDoPQ {
void insert(ToDoItem i) {/*no copy-in needed!*/}
ToDoItem getMin () {/*no copy-out needed!*/}

}

Notes:
* String objects are immutable in Java
* (Using String for month and day is not great style though)

Fall 2013 CSE373: Data Structures & Algorithms 24

This does not work

public class Date {
private final int year;
private String month; // not final
private final String day;

}
public class ToDoItem {
private final Date date;
private final String description;
}
public class ToDoPQ {
void insert (ToDoItem i) {/*no copy-in*/}
ToDoItem getMin() {/*no copy-out*/}

}

Client could mutate a Date’s month that is in our data structure
* So must do entire deep copy of ToDoItem

Fall 2013 CSE373: Data Structures & Algorithms 25

final is shallow

public class ToDoItem {
private final Date date;
private final String description;

* Here, final means no code can update the year or
description fields after the object is constructed

» So they will always refer to the same Date and String objects

» But what if those objects have their contents change
— Cannot happen with String objects
— For Date objects, depends how we define Date

» So final is a “shallow” notion, but we can use it “all the way
down” to get deep immutability

Fall 2013 CSE373: Data Structures & Algorithms 26

This works

* When deep-copying, can “stop” when you get to immutable data
— Copying immutable data is wasted work, so poor style

public class Date { // immutable
private final int year;
private final String month;
private final String day;

}
public class ToDoItem {
private Date date;
private String description;
}
public class ToDoPQ {
ToDoItem getMin () {
int ans = heap|[0];
return new ToDoltem(ans.date, // okay!
ans.description) ;

Fall 201 }

What about this?

public class Date { // immutable

}
public class ToDoItem { // immutable (unlike last slide)

}
public class ToDoPQ {
// a second constructor that uses
// Floyd’'s algorithm
void PriorityQueue (ToDoItem[] items) {
// what copying should we do?

Fall 2013 CSE373: Data Structures & Algorithms 28

What about this?

public class Date { // immutable

}
public class ToDoItem { // immutable (unlike last slide)

}
public class ToDoPQ {
// a second constructor that uses
// Floyd’s algorithm
void PriorityQueue (ToDoItem[] items) {
// what copying should we do?

Copy the array, but do not copy the ToDoItem or Date objects

Fall 2013 CSE373: Data Structures & Algorithms 29

Homework 5

* You are implementing a graph abstraction

» As provided, Vertex and Edge are immutable
— But Collection<Vertex> and Collection<Edge> are not

* You might choose to add fields to Vertex or Edge that make
them not immutable

— Leads to more copy-in-copy-out, but that’s fine!

* Oryou might leave them immutable and keep things like “best-
path-cost-so-far” in another dictionary (e.g., a HashMap)

There is more than one good design, but preserve your abstraction
— Great practice with a key concept in software design

Fall 2013 CSE373: Data Structures & Algorithms 30

