Topological Sort

Problem: Given a DAG $G = (V, E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

Example input:

Example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer

- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
 - Graph with 5 topological orders:

- Do some DAGs have exactly 1 answer?
 - Yes, including all lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex u adjacent to v (i.e., u such that (v, u) in E), decrement the in-degree of u

Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 0 2 1 1 1 1 1 3

Output:
Notice

• Needed a vertex with in-degree 0 to start
 – Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken arbitrarily
 – Can be more than one correct answer, by definition, depending on the graph

Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++)
{
  v = findNewVertexOfDegreeZero();
  put v next in output
  for each w adjacent to v
    w.indegree--;
}
```
Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization: $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all find-new-vertex: $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2)$ - not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = $dequeue()
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u, if new degree is 0, enqueue it

Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v
        w.indegree--;
        if(w.indegree==0)
            enqueue(v);
}
```

- What is the worst-case running time?
 - Initialization: $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ - much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable from v (i.e., there exists a path from v)
 - Possibly “do something” for each node
 - Examples: print to output, set a field, etc.
- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:
 - Keep following nodes
 - But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet()
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if(u is not marked) {
                mark u
                pending.add(u)
            }
    }
}
```
Running Time and Options

• Assuming add and remove are \(O(1)\), entire traversal is \(O(|E|)\)
 – Use an adjacency list representation

• The order we traverse depends entirely on add and remove
 – Popular choice: a stack “depth-first graph search” “DFS”
 – Popular choice: a queue “breadth-first graph search” “BFS”

• DFS and BFS are “big ideas” in computer science
 – Depth: recursively explore one part before going back to the other parts not yet explored
 – Breadth: explore areas closer to the start node first

Example: trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

  ```java
  DFS(Node start) {
    mark and process start
    for each node u adjacent to start
      if u is not marked
        DFS(u)
  }
  ```

 • A, B, D, E, C, F, G, H
 • Exactly what we called a “pre-order traversal” for trees
 – The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

  ```java
  BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while(q is not empty) {
      next = q.dequeue() // and “process”
      for each node u adjacent to next
        if(u is not marked)
          mark u and enqueue onto q
    }
  }
  ```

 • A, B, C, F, H, G, B, E, D
 • A different but perfectly fine traversal

Comparison

• Breadth-first always finds shortest paths, i.e., “optimal solutions”
 – Better for “what is the shortest path from \(x\) to \(y\)”

• But depth-first can use less space in finding a path
 – If longest path in the graph is \(p\) and highest out-degree is \(d\)
 then DFS stack never has more than \(d \times p\) elements
 – But a queue for BFS may hold \(O(|V|)\) nodes

• A third approach:
 – Iterative deepening (IDFS):
 • Try DFS but disallow recursion more than \(K\) levels deep
 • If that fails, increment \(K\) and start the entire search over
 – Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node \(x\) to node \(y\)?”

• But what if we want to actually output the path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• How to do it:
 – Instead of just “marking” a node, store the previous node along the path (when processing \(u\) causes us to add \(v\) to the search, set \(v.path\) field to \(u\))
 – When you reach the goal, follow \(path\) fields back to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique