
CSE373: Data Structures & Algorithms

Lecture 14: Topological Sort / Graph Traversals

Dan Grossman

Fall 2013

Topological Sort

Problem: Given a DAG G=(V,E), output all vertices in an order such

that no vertex appears before another vertex that has an edge to it

Example input:

One example output:

 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Fall 2013 2 CSE373: Data Structures & Algorithms

Disclaimer: Do not use for official

advising purposes !

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Questions and comments

• Why do we perform topological sorts only on DAGs?

– Because a cycle means there is no correct answer

• Is there always a unique answer?

– No, there can be 1 or more answers; depends on the graph

– Graph with 5 topological orders:

• Do some DAGs have exactly 1 answer?

– Yes, including all lists

• Terminology: A DAG represents a partial order and a topological

sort produces a total order that is consistent with it

Fall 2013 3 CSE373: Data Structures & Algorithms

0

1

3

2

4

Uses

• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of

execution

• …

Fall 2013 4 CSE373: Data Structures & Algorithms

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree

– Think “write in a field in the vertex”

– Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

a) Choose a vertex v with labeled with in-degree of 0

b) Output v and conceptually remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u

Fall 2013 5 CSE373: Data Structures & Algorithms

Example Output:

Fall 2013 6 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 1 3

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

Fall 2013 7 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

Fall 2013 8 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1

 0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

 143

Fall 2013 9 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1 0 0

 0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

 143

 374

Fall 2013 10 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1 0 0 2

 0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

 143

 374

 373

Fall 2013 11 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1 0 0 0 0 0 0 2

 0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

 143

 374

 373

 417

Fall 2013 12 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1 0 0 0 0 0 0 2

 0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

 143

 374

 373

 417

 410

Fall 2013 13 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1 0 0 0 0 0 0 2

 0 1

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

 143

 374

 373

 417

 410

 413

Fall 2013 14 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1 0 0 0 0 0 0 2

 0 1

 0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

 143

 374

 373

 417

 410

 413

 XYZ

Fall 2013 15 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1 0 0 0 0 0 0 2

 0 1

 0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:

 126

 142

 143

 374

 373

 417

 410

 413

 XYZ

 415

Fall 2013 16 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

 1 0 0 0 0 0 0 2

 0 1

 0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Notice

• Needed a vertex with in-degree 0 to start

– Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken

arbitrarily

– Can be more than one correct answer, by definition,

depending on the graph

Fall 2013 17 CSE373: Data Structures & Algorithms

Running time?

Fall 2013 18 CSE373: Data Structures & Algorithms

 labelEachVertexWithItsInDegree();

 for(ctr=0; ctr < numVertices; ctr++){

 v = findNewVertexOfDegreeZero();

 put v next in output

 for each w adjacent to v

 w.indegree--;

 }

Running time?

• What is the worst-case running time?

– Initialization O(|V|+|E|) (assuming adjacency list)

– Sum of all find-new-vertex O(|V|2) (because each O(|V|))

– Sum of all decrements O(|E|) (assuming adjacency list)

– So total is O(|V|2) – not good for a sparse graph!

Fall 2013 19 CSE373: Data Structures & Algorithms

 labelEachVertexWithItsInDegree();

 for(ctr=0; ctr < numVertices; ctr++){

 v = findNewVertexOfDegreeZero();

 put v next in output

 for each w adjacent to v

 w.indegree--;

 }

Doing better

The trick is to avoid searching for a zero-degree node every time!

– Keep the “pending” zero-degree nodes in a list, stack,

queue, bag, table, or something

– Order we process them affects output but not correctness or

efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes

2. While queue is not empty

a) v = dequeue()

b) Output v and remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u, if new degree is 0, enqueue it

Fall 2013 20 CSE373: Data Structures & Algorithms

Running time?

Fall 2013 21 CSE373: Data Structures & Algorithms

 labelAllAndEnqueueZeros();

 for(ctr=0; ctr < numVertices; ctr++){

 v = dequeue();

 put v next in output

 for each w adjacent to v {

 w.indegree--;

 if(w.indegree==0)

 enqueue(v);

 }

 }

Running time?

Fall 2013 22 CSE373: Data Structures & Algorithms

• What is the worst-case running time?

– Initialization: O(|V|+|E|) (assuming adjacenty list)

– Sum of all enqueues and dequeues: O(|V|)

– Sum of all decrements: O(|E|) (assuming adjacency list)

– So total is O(|E| + |V|) – much better for sparse graph!

 labelAllAndEnqueueZeros();

 for(ctr=0; ctr < numVertices; ctr++){

 v = dequeue();

 put v next in output

 for each w adjacent to v {

 w.indegree--;

 if(w.indegree==0)

 enqueue(v);

 }

 }

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all

nodes reachable from v (i.e., there exists a path from v)

– Possibly “do something” for each node

– Examples: print to output, set a field, etc.

• Subsumed problem: Is an undirected graph connected?

• Related but different problem: Is a directed graph strongly

connected?

– Need cycles back to starting node

Basic idea:

– Keep following nodes

– But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

Fall 2013 23 CSE373: Data Structures & Algorithms

Abstract Idea

Fall 2013 24 CSE373: Data Structures & Algorithms

 traverseGraph(Node start) {

 Set pending = emptySet()

 pending.add(start)

 mark start as visited

 while(pending is not empty) {

 next = pending.remove()

 for each node u adjacent to next

 if(u is not marked) {

 mark u

 pending.add(u)

 }

 }

 }

Running Time and Options

• Assuming add and remove are O(1), entire traversal is O(|E|)

– Use an adjacency list representation

• The order we traverse depends entirely on add and remove

– Popular choice: a stack “depth-first graph search” “DFS”

– Popular choice: a queue “breadth-first graph search” “BFS”

• DFS and BFS are “big ideas” in computer science

– Depth: recursively explore one part before going back to the

other parts not yet explored

– Breadth: explore areas closer to the start node first

Fall 2013 25 CSE373: Data Structures & Algorithms

Example: trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

Fall 2013 26 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

DFS(Node start) {

 mark and process start

 for each node u adjacent to start

 if u is not marked

 DFS(u)

}

• A, B, D, E, C, F, G, H

• Exactly what we called a “pre-order traversal” for trees

– The marking is because we support arbitrary graphs and we

want to process each node exactly once

Example: trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

Fall 2013 27 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

DFS2(Node start) {

 initialize stack s to hold start

 mark start as visited

 while(s is not empty) {

 next = s.pop() // and “process”

 for each node u adjacent to next

 if(u is not marked)

 mark u and push onto s

 }

}

• A, C, F, H, G, B, E, D

• A different but perfectly fine traversal

Example: trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

Fall 2013 28 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

BFS(Node start) {

 initialize queue q to hold start

 mark start as visited

 while(q is not empty) {

 next = q.dequeue() // and “process”

 for each node u adjacent to next

 if(u is not marked)

 mark u and enqueue onto q

 }

}

• A, B, C, D, E, F, G, H

• A “level-order” traversal

Comparison

• Breadth-first always finds shortest paths, i.e., “optimal solutions”

– Better for “what is the shortest path from x to y”

• But depth-first can use less space in finding a path

– If longest path in the graph is p and highest out-degree is d

then DFS stack never has more than d*p elements

– But a queue for BFS may hold O(|V|) nodes

• A third approach:

– Iterative deepening (IDFS):

• Try DFS but disallow recursion more than K levels deep

• If that fails, increment K and start the entire search over

– Like BFS, finds shortest paths. Like DFS, less space.

 Fall 2013 29 CSE373: Data Structures & Algorithms

Saving the Path

• Our graph traversals can answer the reachability question:

– “Is there a path from node x to node y?”

• But what if we want to actually output the path?

– Like getting driving directions rather than just knowing it’s

possible to get there!

• How to do it:

– Instead of just “marking” a node, store the previous node

along the path (when processing u causes us to add v to the
search, set v.path field to be u)

– When you reach the goal, follow path fields back to where

you started (and then reverse the answer)

– If just wanted path length, could put the integer distance at

each node instead

Fall 2013 30 CSE373: Data Structures & Algorithms

Example using BFS

Fall 2013 31 CSE373: Data Structures & Algorithms

Seattle

San Francisco

Dallas

Salt Lake City

What is a path from Seattle to Tyler

– Remember marked nodes are not re-enqueued

– Note shortest paths may not be unique

Chicago

Tyler

1

1

1

2

3

0

