CSE373: Data Structures & Algorithms
Lecture 14: Topological Sort / Graph Traversals

Dan Grossman
Fall 2013
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

Example input:

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
Questions and comments

• Why do we perform topological sorts only on DAGs?
 – Because a cycle means there is no correct answer

• Is there always a unique answer?
 – No, there can be 1 or more answers; depends on the graph
 – Graph with 5 topological orders:

• Do some DAGs have exactly 1 answer?
 – Yes, including all lists

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution
- …
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 – Think “write in a field in the vertex”
 – Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \(u \) such that \((v,u) \) in \(E \)),
 decrement the in-degree of \(u \)
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 1 1 3
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 1 3 1

Output: 126
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output: 126 142
Example

Output:
126
142
143

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x

In-degree: 0 0 2 1 1 1 1 1 1 1 3
1 0 0
0

Fall 2013 CSE373: Data Structures & Algorithms
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
1 0 0
0

Output:
126
142
143
374
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output:
126
142
143
374
373
Example

Output:
126
142
143
374
373
410
413
415
417
XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 2 0
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?: x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output:
126
142
143
374
373
417
410
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 1 3

Output: 126 142 143 374 373 410 413 415 417 XYZ

Fall 2013 CSE373: Data Structures & Algorithms
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 1 3

Output: 126 142 143 374 373 410 413 415 417 XYZ
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 1 3

Output:
126
142
143
374
373
410
413
415
417
XYZ
415
Notice

- Needed a vertex with in-degree 0 to start
 - Will always have at least 1 because no cycles

- Ties among vertices with in-degrees of 0 can be broken arbitrarily
 - Can be more than one correct answer, by definition, depending on the graph
Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```
Running time?

- What is the worst-case running time?
 - Initialization $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2)$ – not good for a sparse graph!

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```
Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that $(v, u) \in E$), decrement the in-degree of u, if new degree is 0, enqueue it
Running time?

```c
labelAllAndEnqueueZeros();
for (ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if (w.indegree==0)
            enqueue(v);
    }
}
```
Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
  v = dequeue();
  put v next in output
  for each w adjacent to v {
    w.indegree--;
    if(w.indegree==0)
      enqueue(v);
  }
}
```

- What is the worst-case running time?
 - Initialization: $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ – much better for sparse graph!
Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v \), find all nodes reachable from \(v \) (i.e., there exists a path from \(v \))

- Possibly “do something” for each node
- Examples: print to output, set a field, etc.

• Subsumed problem: Is an undirected graph connected?
• Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:

- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Abstract Idea

traverseGraph(Node start) {
 Set pending = emptySet()
pending.add(start)
mark start as visited
while (pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if (u is not marked) {
 mark u
 pending.add(u)
 }
}
}
Running Time and Options

• Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
 – Use an adjacency list representation

• The order we traverse depends entirely on add and remove
 – Popular choice: a stack “depth-first graph search” “DFS”
 – Popular choice: a queue “breadth-first graph search” “BFS”

• DFS and BFS are “big ideas” in computer science
 – Depth: recursively explore one part before going back to the other parts not yet explored
 – Breadth: explore areas closer to the start node first
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

- A, B, D, E, C, F, G, H
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
DFS2(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

- A, C, F, H, G, B, E, D
- A different but perfectly fine traversal
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```plaintext
A
 B  C
D  E  F
G  H

BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

- A, B, C, D, E, F, G, H
- A “level-order” traversal
Comparison

• Breadth-first always finds shortest paths, i.e., “optimal solutions”
 – Better for “what is the shortest path from \(x \) to \(y \)”

• But depth-first can use less space in finding a path
 – If longest path in the graph is \(p \) and highest out-degree is \(d \)
 then DFS stack never has more than \(d \times p \) elements
 – But a queue for BFS may hold \(O(|V|) \) nodes

• A third approach:
 – Iterative deepening (IDFS):
 • Try DFS but disallow recursion more than \(k \) levels deep
 • If that fails, increment \(k \) and start the entire search over
 – Like BFS, finds shortest paths. Like DFS, less space.
Saving the Path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node x to node y?”

• But what if we want to actually output the path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• How to do it:
 – Instead of just “marking” a node, store the previous node along the path (when processing \(u \) causes us to add \(v \) to the search, set \(v.\text{path} \) field to be \(u \))
 – When you reach the goal, follow \(\text{path} \) fields back to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler
 – Remember marked nodes are not re-enqueued
 – Note shortest paths may not be unique