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Topological Sort 

Problem: Given a DAG G=(V,E), output all vertices in an order such 

that no vertex appears before another vertex that has an edge to it 

 

Example input: 

 

 

 

 

 

 

 

One example output: 

     126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415 
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Disclaimer: Do not use for official  

advising purposes ! 
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Questions and comments 

• Why do we perform topological sorts only on DAGs? 

– Because a cycle means there is no correct answer 

 

• Is there always a unique answer? 

– No, there can be 1 or more answers; depends on the graph 

– Graph with 5 topological orders:  

 

• Do some DAGs have exactly 1 answer? 

– Yes, including all lists  

 

• Terminology: A DAG represents a partial order and a topological 

sort produces a total order that is consistent with it 
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Uses 

• Figuring out how to graduate 

 

• Computing an order in which to recompute cells in a spreadsheet 

 

• Determining an order to compile files using a Makefile 

 

• In general, taking a dependency graph and finding an order of 

execution  

 

• … 
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A First Algorithm for Topological Sort 

1. Label (“mark”) each vertex with its in-degree 

– Think “write in a field in the vertex” 

– Could also do this via a data structure (e.g., array) on the side 

 

2. While there are vertices not yet output: 

a) Choose a vertex v with labeled with in-degree of 0 

b) Output v and conceptually remove it from the graph 

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u 

Fall 2013 5 CSE373: Data Structures & Algorithms 



Example Output:  
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Node:          126 142  143  374  373  410  413  415  417  XYZ 

Removed? 

In-degree:    0       0     2      1       1       1     1      1      1      3 

 

CSE 142 CSE 143 

CSE 374 

CSE 373 

CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  

   126 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 

Removed?   x 

In-degree:    0       0     2      1       1       1     1      1      1      3 

                                     1 

CSE 142 CSE 143 

CSE 374 

CSE 373 

CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  

   126 

   142 
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Example Output:  

   126 

   142 

   143 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 

Removed?   x       x      x 

In-degree:    0       0     2      1       1       1     1      1      1      3 

                                     1      0       0 

                                     0 
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Example Output:  

   126 

   142 

   143 

   374 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
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                                     1      0       0                                      2 
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Example Output:  

   126 

   142 

   143 

   374 

   373 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 

Removed?   x       x      x      x       x 
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Example Output:  

   126 

   142 

   143 

   374 

   373 

   417 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 

Removed?   x       x      x      x       x                              x 

In-degree:    0       0     2      1       1       1     1      1      1      3 

                                     1      0       0       0     0      0      0      2 

                                     0 

CSE 142 CSE 143 

CSE 374 

CSE 373 

CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  

   126 

   142 

   143 

   374 

   373 

   417 

   410 
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Example Output:  

   126 

   142 

   143 

   374 

   373 

   417 

   410 

   413 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
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Example Output:  

   126 

   142 

   143 

   374 

   373 

   417 

   410 

   413 

   XYZ 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
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Example Output:  

   126 

   142 

   143 

   374 

   373 

   417 

   410 

   413 

   XYZ 

   415 
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Notice 

 

• Needed a vertex with in-degree 0 to start 

– Will always have at least 1 because no cycles 

 

• Ties among vertices with in-degrees of 0 can be broken 

arbitrarily 

– Can be more than one correct answer, by definition, 

depending on the graph 
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Running time? 
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  labelEachVertexWithItsInDegree(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = findNewVertexOfDegreeZero(); 

    put v next in output 

   for each w adjacent to v 

      w.indegree--; 

  } 



Running time? 

• What is the worst-case running time? 

– Initialization O(|V|+|E|) (assuming adjacency list) 

– Sum of all find-new-vertex O(|V|2) (because each O(|V|)) 

– Sum of all decrements O(|E|) (assuming adjacency list) 

– So total is O(|V|2) – not good for a sparse graph! 
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  labelEachVertexWithItsInDegree(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = findNewVertexOfDegreeZero(); 

    put v next in output 

   for each w adjacent to v 

      w.indegree--; 

  } 



Doing better 

The trick is to avoid searching for a zero-degree node every time! 

– Keep the “pending” zero-degree nodes in a list, stack, 

queue, bag, table, or something 

– Order we process them affects output but not correctness or 

efficiency provided add/remove are both O(1) 
 

Using a queue: 
 

1. Label each vertex with its in-degree, enqueue 0-degree nodes 

2. While queue is not empty 

a)  v = dequeue() 

b) Output v and remove it from the graph 

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u, if new degree is 0, enqueue it 
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Running time? 
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  labelAllAndEnqueueZeros(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = dequeue(); 

    put v next in output 

   for each w adjacent to v { 

      w.indegree--; 

      if(w.indegree==0)  

        enqueue(v); 

    } 

  } 



Running time? 
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• What is the worst-case running time? 

– Initialization: O(|V|+|E|) (assuming adjacenty list) 

– Sum of all enqueues and dequeues: O(|V|) 

– Sum of all decrements: O(|E|) (assuming adjacency list) 

– So total is O(|E| + |V|) – much better for sparse graph! 

 

  labelAllAndEnqueueZeros(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = dequeue(); 

    put v next in output 

   for each w adjacent to v { 

      w.indegree--; 

      if(w.indegree==0)  

        enqueue(v); 

    } 

  } 



Graph Traversals 

Next problem: For an arbitrary graph and a starting node v, find all 

nodes reachable from v (i.e., there exists a path from v) 

– Possibly “do something” for each node  

– Examples: print to output, set a field, etc. 
 

• Subsumed problem: Is an undirected graph connected? 

• Related but different problem: Is a directed graph strongly 

connected? 

– Need cycles back to starting node 
 

Basic idea:  

– Keep following nodes 

– But “mark” nodes after visiting them, so the traversal terminates 

and processes each reachable node exactly once 
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Abstract Idea 
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  traverseGraph(Node start) { 

    Set pending = emptySet() 

    pending.add(start) 

     mark start as visited 

     while(pending is not empty) { 

       next = pending.remove() 

       for each node u adjacent to next 

          if(u is not marked) { 

            mark u 

            pending.add(u) 

          } 

     } 

  } 



Running Time and Options 

• Assuming add and remove are O(1), entire traversal is O(|E|) 

– Use an adjacency list representation 

 

• The order we traverse depends entirely on add and remove 

– Popular choice: a stack  “depth-first graph search”  “DFS” 

– Popular choice: a queue “breadth-first graph search” “BFS” 

 

• DFS and BFS are “big ideas” in computer science 

– Depth: recursively explore one part before going back to the 

other parts not yet explored 

– Breadth: explore areas closer to the start node first 
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Example: trees 

• A tree is a graph and DFS and BFS are particularly easy to “see”  
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A 

B 

D E 
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H G 

DFS(Node start) { 

  mark and process start 

  for each node u adjacent to start 

    if u is not marked 

      DFS(u) 

} 

• A, B, D, E, C, F, G, H 

• Exactly what we called a “pre-order traversal” for trees 

– The marking is because we support arbitrary graphs and we 

want to process each node exactly once 

 



Example: trees 

• A tree is a graph and DFS and BFS are particularly easy to “see”  

Fall 2013 27 CSE373: Data Structures & Algorithms 

A 

B 

D E 

C 

F 

H G 

DFS2(Node start) { 

  initialize stack s to hold start 

  mark start as visited 

  while(s is not empty) { 

    next = s.pop() // and “process” 

    for each node u adjacent to next 

     if(u is not marked) 

       mark u and push onto s 

  } 

} 

• A, C, F, H, G, B, E, D 

• A different but perfectly fine traversal 

 



Example: trees 

• A tree is a graph and DFS and BFS are particularly easy to “see”  
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BFS(Node start) { 

  initialize queue q to hold start 

  mark start as visited 

  while(q is not empty) { 

    next = q.dequeue() // and “process” 

    for each node u adjacent to next 

     if(u is not marked) 

       mark u and enqueue onto q 

  } 

} 

• A, B, C, D, E, F, G, H 

• A “level-order” traversal 

 



Comparison 

• Breadth-first always finds shortest paths, i.e., “optimal solutions” 

– Better for “what is the shortest path from x to y” 
 

• But depth-first can use less space in finding a path 

– If longest path in the graph is p and highest out-degree is d 

then DFS stack never has more than d*p elements 

– But a queue for BFS may hold O(|V|) nodes 
 

• A third approach: 

– Iterative deepening (IDFS):  

• Try DFS but disallow recursion more than K levels deep 

• If that fails, increment K and start the entire search over 

– Like BFS, finds shortest paths.  Like DFS, less space. 
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Saving the Path 

• Our graph traversals can answer the reachability question: 

– “Is there a path from node x to node y?” 
 

• But what if we want to actually output the path? 

– Like getting driving directions rather than just knowing it’s 

possible to get there! 
 

• How to do it:  

– Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the 
search, set v.path field to be u) 

– When you reach the goal, follow path fields back to where 

you started (and then reverse the answer) 

– If just wanted path length, could put the integer distance at 

each node instead 
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Example using BFS 
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Seattle 

San Francisco 

Dallas 

Salt Lake City 

What is a path from Seattle to Tyler 

–   Remember marked nodes are not re-enqueued 

–   Note shortest paths may not be unique 

Chicago 

Tyler 
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