CSE373: Data Structures & Algorithms
Lecture 12: Hash Collisions

Dan Grossman
Fall 2013

Hash Tables: Review

* Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some reasonable assumptions

» A hash table is an array of some fixed size hash table
— But growable as we'll see 0
client hash table library

collision?

F ssmmmmp int s table-index mmmmmmmp COllision

resolution

TableSize -1

Fall 2013 CSE373: Data Structures & Algorithms

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
— ldeas?

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10

O 00 N &N U A W N = O
~ |~~~ [~~~ |~

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

0 —LJoly Chaining:

1 / All keys that map to the same
5 / table location are kept in a list
3 ; (a.k.a. a “chain” or “bucket”)
4 / As easy as it sounds

5 /

6 | / Example:

7 / insert 10, 22, 107, 12, 42

8 / with mod hashing

9 / and TableSize = 10
Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

—10l/ Chaining:
/ All keys that map to the same
] table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10

O 00 9 &N W hA WD = O
~ |~~~ |~ |-

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

Separate Chaining

o | —holy Chaining: 0 | —f10[/ Chaining:
1 / All keys that map to the same 1 / All keys that map to the same
table location are keptin a list table location are kept in a list
—1f22l : —f12] F—f22[/] :
i ; 2[/] (a.k.a. a “chain” or “bucket”) i ; 12 422/ (a.k.a. a “chain” or “bucket”)
4 / As easy as it sounds 4 / As easy as it sounds
5 / 5 /
6 | / Example: 6 | / Example:
7 01 /] insert 10, 22, 107, 12, 42 7 01 /] insert 10, 22, 107, 12, 42
8 / with mod hashing 8 / with mod hashing
9 / and TableSize = 10 9 / and TableSize = 10
Fall 2013 CSE373: Data Structures & Algorithms 7 Fall 2013 CSE373: Data Structures & Algorithms 8
Separate Chaining Thoughts on chaining
| Chaining:
0 10| / 9 » Worst-case time for £ind?
1 / All keys that map to the same i
table location are kept in a list — Linear
2 —la2] {2 {22[/] (a.k.a. a “chain’ or “bucket’) — But only with really bad luck or bad hash function
3 / — So not worth avoiding (e.g., with balanced trees at each
4 / As easy as it sounds bucket)
5 /
6 / Example: . Bey_ond gsy?wptotlc complexity, some “data-structure
7 1 iod /] insert 10. 22 107 12. 42 engineering” may be warranted
|njse T T — Linked list vs. array vs. chunked list (lists should be short!)
8 / with mod hashing — Move-to-front
and TableSize = 10
9 / antesize — Maybe leave room for 1 element (or 27?) in the table itself, to
optimize constant factors for the common case
« A time-space trade-off...
Fall 2013 CSE373: Data Structures & Algorithms 9 Fall 2013 CSE373: Data Structures & Algorithms 10

Time vs. space (constant factors only here)

0 ——10| / 0|10/

1 / 1 /X

2 a2 F—f2] Ff22[/] 2 |42] T 12
3 / 3 /X

4 / 4 /X

5 / 5 /| X

6 / 6 /X

7 [d—hod/] 7 [107] /

8 / 8 /| X

9 / 9 /X

Fall 2013 CSE373: Data Structures & Algorithms 1

More rigorous chaining analysis
Definition: The load factor, 4, of a hash table is

_ N < number of elements
~ TableSize

Under chaining, the average number of elements per bucket is
So if some inserts are followed by random finds, then on average:

» Each unsuccessful £ind compares against items
» Each successful £ind compares against items

Fall 2013 CSE373: Data Structures & Algorithms 12

More rigorous chaining analysis

Definition: The load factor, 4, of a hash table is

_ N < number of elements
~ TableSize

Under chaining, the average number of elements per bucket is 4
So if some inserts are followed by random finds, then on average:
» Each unsuccessful £ind compares against 1 items

» Each successful £ind compares against 1/2 items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining

Fall 2013 CSE373: Data Structures & Algorithms 13

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /
— try (h(key) + 2) % TableSize. Iffull, 2 /
— try (h(key) + 3) % TableSize. Iffull... 3 /
4 /
« Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 /
Fall 2013 CSE373: Data Structures & Algorithms 14

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /
— try (h(key) + 2) % TableSize. Iffull, 2 /
— try (h(key) + 3) % TableSize. Iffull... 3 /
4 /
« Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19
Fall 2013 CSE373: Data Structures & Algorithms 15

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 8
— try (h(key) + 1) % TableSize. [ffull, 1 /
— try (h(key) + 2) % TableSize. Iffull, 2 /
— try (h(key) + 3) % TableSize. Iffull... 3 /
4 /
« Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19
Fall 2013 CSE373: Data Structures & Algorithms 16

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 8
— try (h(key) + 1) % TableSize. Iffull, 1 109
— try (h(key) + 2) % TableSize. Iffull, 2 /
— try (h(key) + 3) % TableSize. Iffull... 3 /
4 /
« Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19

Fall 2013 CSE373: Data Structures & Algorithms 17

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 8
— try (h(key) + 1) % TableSize. Iffull, 1 109
— try (h(key) + 2) % TableSize. Iffull, 2 10
— try (h(key) + 3) % TableSize. Iffull... 3 /
4 /
- Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19
Fall 2013 CSE373: Data Structures & Algorithms 18

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table

Trying the next spot is called probing
— We just did linear probing
» it probe was (h(key) + i) % TableSize

— In general have some probe function £ and use
h(key) + £(i) % TableSize

Open addressing does poorly with high load factor 4
— So want larger tables
— Too many probes means no more O(1)

Fall 2013 CSE373: Data Structures & Algorithms

Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down ©)

Fall 2013 CSE373: Data Structures & Algorithms

20

Other operations

insert finds an open table position using a probe function

What about £ind?

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

.J\.J._.J-u_',e'.\!u\-'-'- g

— Must use same probe function to “retrace the trail” for the data Tends to produce s Ju.gun.!u'-l'-‘l“ -.l-]..-enz\'_'-t‘!\’f' i
— Unsuccessful search when reach empty position clusters, which lead to e "“’L“J"J""'l'_I_WJI_JL._,.I,J..I m
long probing sequences f_ywein]!_lJIQL,'lJ'-J'!ﬁL;‘:v "
What about delete? + Called primary e eSS EEEEE
— Must use “lazy” deletion. Why? clustering F RIS J'.!bl‘.‘lﬂ‘.!v_ﬂl_;eul.;\;- ,
+ Marker indicates “no data here, but don’t stop probing” * Saw this starting in . T i
— Note: delete with chaining is plain-old list-remove our example il ottt
Ll el
LiLjeiL e el e Al

s eneie et o8 [R. Sedgewick]

Fall 2013 CSE373: Data Structures & Algorithms 21 Fall 2013 CSE373: Data Structures & Algorithms 2

Analysis of Linear Probing In a chart

» Trivial fact: For any 4 < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

* Non-trivial facts we won'’t prove:
Average # of probes given 4 (in the limit as TableSize —w)

— Unsuccessful search: 1 1
—| 14+ —-
2((1 —1)2]
— Successful search: 1 1
— 1+ S
20 (1-4)

» This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

Fall 2013 CSE373: Data Structures & Algorithms

23

Average i of Probes

» Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Linear Probing Linear Probing
16.00 w 35000
14.00 3 300,00
12.00 ;— 250.00
10.00 o
800 2 ‘EO'EZ ;
. 150. ——
600 o nat fo
200 ﬂEﬂ 100,00
> —linear
e — = : = found
0.00 < oo

o1

Load Factor Load Factor

» By comparison, chaining performance is linear in A and has no
trouble with 1>1

Fall 2013 CSE373: Data Structures & Algorithms

andd

probing

24

Quadratic probing

* We can avoid primary clustering by changing the probe function
(h(key) + £(i)) % TableSize

* A common technique is quadratic probing:
£(i) = i?
— So probe sequence is:
« O probe: h(key) % TableSize
* 1tprobe: (h(key) + 1) % TableSize
« 27 probe: (h(key) + 4) % TableSize
* 34 probe: (h(key) + 9) % TableSize

« it probe: (h(key) + i?) % TableSize

* Intuition: Probes quickly “leave the neighborhood”

Fall 2013 CSE373: Data Structures & Algorithms 25

Quadratic Probing Example

0 TableSize=10
1 Insert:
2 89
3 18
4 49
5 58
6 79
7
8
9
Fall 2013 CSE373: Data Structures & Algorithms 26

Quadratic Probing Example

0 TableSize=10
1 Insert:
2 89
3 18
4 49
5 58
6 79
7
8
9 89
Fall 2013 CSE373: Data Structures & Algorithms 27

Quadratic Probing Example

0 TableSize=10
1 Insert:
2 89
3 18
4 49
5 58
6 79
7
8 18
9 89
Fall 2013 CSE373: Data Structures & Algorithms 28

Quadratic Probing Example

0 49 TableSize=10
1 Insert:

2 89

3 18

4 49

5 58

6 79

7

8 18

9 89

Fall 2013 CSE373: Data Structures & Algorithms 29

Quadratic Probing Example

0 49 TableSize=10
1 Insert:
2 58 89
3 18
4 49
5 58
6 79
7
8 18
9 89
Fall 2013 CSE373: Data Structures & Algorithms 30

Quadratic Probing Example

Fall 2013

O 00 N AN W A WD = O

49

58

79

18

89

TableSize=10
Insert:

89

18

49

58

79

CSE373: Data Structures & Algorithms

31

Another Quadratic Probing Example

Fall 2013

A N AW N =D

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7=106)
40 % 7=5)
(48 % 7=106)
(5%7=5)
(55 % 7=16)
47 % 7=5)

32

Another Quadratic Probing Example

Fall 2013

A N A W N =S

76

TableSize =7

Insert:

76 (76 % 7=06)
40 40% 7=5)
48 48 % 7=06)
5 (5%7=5)
55 B55% 7=06)
47 @7 % 7=5)

CSE373: Data Structures & Algorithms

33

Another Quadratic Probing Example

Fall 2013

A N A W N =D

40

76

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7=6)
(40 % 7=5)
(48 % 7=6)
(5%7=5)
(55 % 7=6)
@7 %7=5)

Another Quadratic Probing Example

Fall 2013

A N A W N =S

48

40

76

TableSize =7

Insert:

76 (76 % 7=06)
40 40% 7=5)
48 48 % 7=16)
5 (5%7=5)
55 B55% 7=06)
47 @7 % 7=5)

CSE373: Data Structures & Algorithms

35

Another Quadratic Probing Example

Fall 2013

A N A W N =D

48

40

76

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7= 6)
(40 % 7=5)
48 % 7=6)
(5%7=5)
(55 % 7=6)
@7 %7=5)

36

Another Quadratic Probing Example

TableSize =7

0 48
1 Insert:
5 e 76 (76 % 7=6)

40 40 % 7=5)
3% 48 (48 % 7=6)
4 5 (5%7=5)
5 40 55 (55 % 7=06)

o, =
. 6 47 @7%7=5)
Fall 2013 CSE373: Data Structures & Algorithms 37

Another Quadratic Probing Example

TableSize =7

0 | 48

1 Insert:

) e 76 (76 % 7 =6)
40 (40 % 7 =5)

3 L5 48 (48 % 7=6)

4 5 (5%7=5)

s | a0 55 (55 % 7=6)

o, =
I 47 47 % 7=5)

Doh!: Foralln, ((n*n) +5) % 7 is 0, 2, 5, or 6

» Excel shows takes “at least” 50 probes and a pattern

* Proof uses induction and (n2+5) % 7 ((n-7)2+5) % 7
* Infact, forall cand k, (n24c) % k ((n-k)2+c) % k

Fall 2013 CSE373: Data Structures & Algorithms 38

From Bad News to Good News

* Bad news:

— Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

» Good news:
— If Tablesize is prime and L < ', then quadratic probing will
find an empty slot in at most TableSize/2 probes

— So: If you keep A < %2 and TableSize is prime, no need to
detect cycles

— Optional: Proof is posted in lecturel2. txt
» Also, slightly less detailed proof in textbook
» Key fact: Forprime Tand 0 < i,j < T/2wherei # j,
(k + i2) $ T # (k + j2) % T (i.e., noindex repeat)

Clustering reconsidered

* Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

» Butit's no help if keys initially hash to the same index
— Called secondary clustering

» Can avoid secondary clustering with a probe function that
depends on the key: double hashing...

Fall 2013 CSE373: Data Structures & Algorithms 39 Fall 2013 CSE373: Data Structures & Algorithms 40
Double hashing Double-hashing analysis
Idea: » Intuition: Because each probe is “jumping” by g (key) each

— Given two good hash functions h and g, it is very unlikely
that for some key, h(key) == g(key)

— So make the probe function £(i) = i*g(key)

Probe sequence:
« O probe: h(key) % TableSize
« 1stprobe: (h(key) + g(key)) % TableSize
« 27 probe: (h(key) + 2*g(key)) % TableSize
« 3dprobe: (h(key) + 3*g(key)) % TableSize

- ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0

Fall 2013 CSE373: Data Structures & Algorithms 41

time, we “leave the neighborhood” and “go different places from
other initial collisions”

» But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)

— ltis known that this cannot happen in at least one case:
*h(key) = key % p
*g(key) = q - (key % q)
*e2<g<p
- p and q are prime

Fall 2013 CSE373: Data Structures & Algorithms 42

More double-hashing facts ~ Charts

Unifarm Hashing Uniform Hashing
* Assume “uniform hashing” g i 1
- . & 6 100,00
— Means probability of g (keyl) % p == g(key2) % p is g sw E Sim
l/p E’ ':j E EO.00
3 2 & a0
Lo) E e
* Non-trivial facts we won'’t prove: g |
. < 000 < oo
Average # of probes given A4 (in the limit as TableSize —) gEdnaEsugyan " zmmmnen ipgs
— Unsuccessful search (intuitive): 1 Load Factor Load Factor
1_ ﬂ] Linear Probing . Linear Probing
w 1600 w 15000
- & 1o 2 000
— Successful search (less intuitive): 4 1 g 120 £ 2000
2 om - aian
—loge| — 2 sw — - —binear probing
A 1-2 y o0 ot found g not bound
. . . E 400 lineas probsny E ——linear prol
« Bottom line: unsuccessful bad (but not as bad as linear probing), g g i et : ot
0.00

but successful is not nearly as bad

Fall 2013 CSE373: Data Structures & Algorithms 43

Rehashing

» As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything

* With chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

» For open addressing, half-full is a good rule of thumb

* New table size
— Twice-as-big is a good idea, except, uhm, that won’t be prime!
— So go about twice-as-big

— Can have a list of prime numbers in your code since you won’t
grow more than 20-30 times

Fall 2013 CSE373: Data Structures & Algorithms 45

