

CSE373: Data Structures & Algorithms Lecture 12: Hash Collisions

Dan Grossman Fall 2013

Hash Tables: Review

- Aim for constant-time (i.e., O(1)) find, insert, and delete
 - "On average" under some reasonable assumptions
- · A hash table is an array of some fixed size
 - But growable as we'll see

Fall 2013

CSE373: Data Structures & Algorithms

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

Separate Chaining

/

2 /

3 /

5

7 /

8 /

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

hash table

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10

Fall 2013

CSE373: Data Structures & Algorithms

Fall 2013

CSE373: Data Structures & Algorithms

Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10

Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10

Fall 2013 CSE373: Data Structures & Algorithms

Fall 2013

CSE373: Data Structures & Algorithms

6

Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

Fall 2013 CSE373: Data Structures & Algorithms 9

Thoughts on chaining

- Worst-case time for find?
 - Linear
 - But only with really bad luck or bad hash function
 - So not worth avoiding (e.g., with balanced trees at each bucket)
- Beyond asymptotic complexity, some "data-structure engineering" may be warranted
 - Linked list vs. array vs. chunked list (lists should be short!)
 - Move-to-front
 - Maybe leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
 - A time-space trade-off...

Fall 2013 CSE373: Data Structures & Algorithms 10

Time vs. space (constant factors only here)

More rigorous chaining analysis

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{TableSize} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is ____

So if some inserts are followed by *random* finds, then on average:

- Each unsuccessful find compares against items
- Each successful find compares against _____ items

Fall 2013 CSE373: Data Structures & Algorithms 11 Fall 2013 CSE373: Data Structures & Algorithms 12

More rigorous chaining analysis

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:

- Each unsuccessful ${ t find}$ compares against ${ t \lambda}$ items
- Each successful find compares against λ/2 items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining

Fall 2013 CSE373: Data Structures & Algorithms

Alternative: Use empty space in the table

0	/
1	/
2	/
3	/
4	/
5	/
6	/
7	/
8	38
0	/

Fall 2013 CSE373: Data Structures & Algorithms

Alternative: Use empty space in the table

- Another simple idea: If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10
- 0 / 1 / 2 / 3 /

13

- 5 /
- /
- 38

15

Fall 2013 CSE373: Data Structures & Algorithms

Alternative: Use empty space in the table

- Another simple idea: If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
- try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

U	8	
1	/	
2	/	
2	/	
4	/	
5	/	
6	/	
7	/	
8	38	
9	19	

Fall 2013 CSE373: Data Structures & Algorithms 16

Alternative: Use empty space in the table

- · Another simple idea: If h (key) is already full,
 - try (h (key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10
- 0 8 1 109 2 / 3 / 4 / 5 /
- 6 / 7 / 8 38
- 9 19

17

Alternative: Use empty space in the table

- · Another simple idea: If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	8	
1	109	
2	10	
3	/	
4	/	
5	/	
6	/	
7	/	
8	38	
9	19	

Fall 2013 CSE373: Data Structures & Algorithms

Fall 2013

CSE373: Data Structures & Algorithms

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table

Trying the next spot is called probing

- We just did linear probing
 - ith probe was (h(key) + i) % TableSize
- In general have some probe function f and use h(key) + f(i) % TableSize

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more O(1)

Fall 2013

CSE373: Data Structures & Algorithms

19

Terminology

We and the book use the terms

- "chaining" or "separate chaining"
- "open addressing"

Very confusingly,

- "open hashing" is a synonym for "chaining"
- "closed hashing" is a synonym for "open addressing"

(If it makes you feel any better, most trees in CS grow upside-down (2)

Fall 2013

CSE373: Data Structures & Algori

Other operations

insert finds an open table position using a probe function

What about find?

- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about delete?

- Must use "lazy" deletion. Why?
 - · Marker indicates "no data here, but don't stop probing"
- Note: delete with chaining is plain-old list-remove

Fall 2013

CSE373: Data Structures & Algorithms

21

23

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (which is a good thing)

Tends to produce clusters, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

Fall 2013

CSE373: Data Structures & Algorithms

24

Analysis of Linear Probing

- Trivial fact: For any $\lambda < 1$, linear probing will find an empty slot
 - It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove:

Average # of probes given λ (in the limit as TableSize $\rightarrow \infty$)

Average # of probes given
$$\lambda$$
 (in the limit a – Unsuccessful search:
$$\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)$$

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

- Successful search:

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$$

This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

In a chart

- · Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes "large table" but point remains)

By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$

Quadratic probing

- We can avoid primary clustering by changing the probe function
 (h(key) + f(i)) % TableSize
- · A common technique is quadratic probing:

$$f(i) = i^2$$

- So probe sequence is:
 - 0th probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize

• ...

- ith probe: (h(key) + i²) % TableSize
- · Intuition: Probes quickly "leave the neighborhood"

Fall 2013 CSE373: Data Structures & Algorithms

25

27

Quadratic Probing Example

9

Fall 2013 CSE373: Data Structures & Algorithms

Quadratic Probing Example

0	
1	
2	
3	
4	
5	
6	
7	
8	
0	90

Fall 2013

79

CSE373: Data Structures & Algorithms

Quadratic Probing Example

0	
1	
2	
3	
4	
5	
6	
7	
8	18
9	89

28

Fall 2013 CSE373: Data Structures & Algorithms

Quadratic Probing Example

0	49
1	
2	
3	
4	
5	
6	
7	
8	18
9	89

Quadratic Probing Example

0	49
1	
2	58
3	
4	
5	
6	
7	
8	18
9	89

Quadratic Probing Example

0	49
1	
2	58
3	79
4	
5 6	
6	
7	
8	18
9	89

Another Quadratic Probing Example

Fall 2013

CSE373: Data Structures & Algorithms

Fall 2013

31

33

CSE373: Data Structures & Algorithms

32

34

Another Quadratic Probing Example

TableSize = 7

Insert:	
76	(76 % 7 = 6)
40	(40 % 7 = 5)
48	(48 % 7 = 6)
5	(5%7=5)
55	(55 % 7 = 6)
47	(47 % 7 = 5)

Another Quadratic Probing Example

TableSize = 7

Fall 2013

CSE373: Data Structures & Algorithms

Fall 2013

CSE373: Data Structures & Algorithms

Another Quadratic Probing Example

TableSize = 7

Another Quadratic Probing Example

TableSize = 7

Another Quadratic Probing Example

0 48 1 2 5 3 55 4 5 40 6 76

TableSize = 7

Insert:	
76	(76 % 7 = 6)
40	(40 % 7 = 5)
48	(48 % 7 = 6)
5	(5%7=5)
55	(55 % 7 = 6)
47	(47 % 7 = 5)

Fall 2013

CSE373: Data Structures & Algorithms

37

Another Quadratic Probing Example

		TableSize	TableSize = 7	
0	48	TableSize	,	
1		Insert:		
2	5	76	(76 % 7 = 6)	
_	_	40	(40 % 7 = 5)	
3	55	48	(48 % 7 = 6)	
4		5	(5%7=5)	
5	40	55	(55 % 7 = 6)	
		47	(47 % 7 = 5)	
6	76	47	(47 70 7 3)	

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

- Excel shows takes "at least" 50 probes and a pattern
- Proof uses induction and (n^2+5) % 7 = $((n-7)^2+5)$ % 7
 - In fact, for all c and k, (n^2+c) % $k = ((n-k)^2+c)$ % k

Fall 2013 CSE373: Data Structures & Algorithms

38

42

From Bad News to Good News

- Bad news:
 - Quadratic probing can cycle through the same full indices, never terminating despite table not being full
- · Good news:
 - If TableSize is prime and λ < ½, then quadratic probing will find an empty slot in at most TableSize/2 probes
 - So: If you keep λ < ½ and TableSize is prime, no need to detect cycles
 - Optional: Proof is posted in lecture12.txt
 - · Also, slightly less detailed proof in textbook
 - Key fact: For prime \mathbf{T} and 0 < i, j < T/2 where $i \neq j$, $(k + i^2) % <math>\mathbf{T} \neq (k + j^2) % \mathbf{T}$ (i.e., no index repeat)

Fall 2013

CSE373: Data Structures & Algorithms

Fall 2013

CSE373: Data Structures & Algorithms

Double hashing

Idea:

- Given two good hash functions h and g, it is very unlikely that for some key, h (key) == g (key)
- So make the probe function f(i) = i*g(key)

Probe sequence:

- 0th probe: h(key) % TableSize
- 1st probe: (h(key) + g(key)) % TableSize
- 2nd probe: (h(key) + 2*g(key)) % TableSize
- 3rd probe: (h(key) + 3*g(key)) % TableSize
- ...
- i^{th} probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0

Fall 2013 CSE373: Data Structures & Algorithms

41

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering:
 no problem with keys initially hashing to the same neighborhood
- · But it's no help if keys initially hash to the same index
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Double-hashing analysis

- Intuition: Because each probe is "jumping" by g (key) each time, we "leave the neighborhood" and "go different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
 - It is known that this cannot happen in at least one case:
 - h(key) = key % p
 - g(key) = q (key % q)
 - 2 < q < p
 - p and q are prime

Fall 2013 CSE373: Data Structures & Algorithms

More double-hashing facts

- · Assume "uniform hashing"
 - Means probability of g(key1) % p == g(key2) % p is 1/p
- Non-trivial facts we won't prove:

Average # of probes given λ (in the limit as **TableSize** $\rightarrow \infty$)

Unsuccessful search (intuitive):

Successful search (less intuitive):

 $\frac{1}{\lambda} \log_{e} \left(\frac{1}{1 - \lambda} \right)$

 Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad

Fall 2013 CSE373: Data Structures & Algorithms

Charts

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything
- · With chaining, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?
 - Consider average or max size of non-empty chains?
- · For open addressing, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except, uhm, that won't be prime!
 - So go about twice-as-big
 - Can have a list of prime numbers in your code since you won't grow more than 20-30 times

Fall 2013

CSE373: Data Structures & Algorithms

45

43