CSE373: Data Structures & Algorithms
Lecture 11: Hash Tables

Dan Grossman
Fall 2013

Motivating Hash Tables

For a dictionary with n key, value pairs

insert find delete
* Unsorted linked-list Oo(1) O(n) O(n)
* Unsorted array o(1) O(n) O(n)
» Sorted linked list O(n) O(n) O(n)
» Sorted array O(n) O(logn) O(n)
* Balanced tree O(logn) O(logn) O(logn)
* Magic array o(1) o(1) o(1)

Sufficient “magic”:
— Use key to compute array index for an item in O(1) time [doable]
— Have a different index for every item [magic]

Fall 2013 CSE373: Data Structures & Algorithms 2

Hash Tables

* Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some often-reasonable assumptions

* A hash table is an array of some fixed size

hash table
0
« Basicidea:
hash function:
index = h(key)
_—
key space (e.g., integers, strings) TableSize —1
Fall 2013 CSE373: Data Structures & Algorithms 3

Hash Tables vs. Balanced Trees

* Interms of a Dictionary ADT for just insert, find, delete, hash
tables and balanced trees are just different data structures
— Hash tables O(1) on average (assuming few collisions)
— Balanced trees O(1og n) worst-case

« Constant-time is better, right?
— Yes, but you need “hashing to behave” (must avoid collisions)

— Yes, but £findMin, findMax, predecessor, and successor
go from O(1log n) to O(n), printSorted from O(n) to O(n log n)

» Why your textbook considers this to be a different ADT

Fall 2013 CSE373: Data Structures & Algorithms 4

Hash Tables

* There are m possible keys (m typically large, even infinite)
* We expect our table to have only n items
e nis much less than m (often written n << m)

Many dictionaries have this property

— Compiler: All possible identifiers allowed by the language vs.
those used in some file of one program

— Database: All possible student names vs. students enrolled

— Al: All possible chess-board configurations vs. those
considered by the current player

Fall 2013 CSE373: Data Structures & Algorithms 5

Hash functions

An ideal hash function:

* Fast to compute

* “Rarely” hashes two “used” keys to the same index hash table
— Often impossible in theory but easy in practice
— Will handle collisions in next lecture

0

hash function:
index = h(key)
_—

key space (e.g., integers, strings) TableSize -1

Fall 2013 CSE373: Data Structures & Algorithms 6

Who hashes what?

* Hash tables can be generic
— To store elements of type E, we just need E to be:
1. Comparable: order any two E (as with all dictionaries)
2. Hashable: convert any E to an int

* When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles:

client hash table library

collision? oilision

E mmmes) int mmmmss) (able-index Emmmms)

resolution

* We will learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

Fall 2013 CSE373: Data Structures & Algorithms 7

More on roles

Some ambiguity in terminology on which parts are “hashing”
client hash table library

collision? oilision

E mmmm=) int mmmms) table-index Emmm——)

“hashing”? ~ “hashing™?

resolution

Two roles must both contribute to minimizing collisions (heuristically)
» Client should aim for different ints for expected items
— Avoid “wasting” any part of E or the 32 bits of the int
» Library should aim for putting “similar” ints in different indices
— Conversion to index is almost always “mod table-size”
— Using prime numbers for table-size is common

Fall 2013 CSE373: Data Structures & Algorithms 8

What to hash?

We will focus on the two most common things to hash: ints and strings

— For objects with several fields, usually best to have most of the
“identifying fields” contribute to the hash to avoid collisions

— Example:
class Person {
String first; String middle; String last;
Date birthdate;
}

— Aninherent trade-off: hashing-time vs. collision-avoidance
+ Badidea(?): Use only first name
* Good idea(?): Use only middle initial
+ Admittedly, what-to-hash-with is often unprincipled ®

Fall 2013 CSE373: Data Structures & Algorithms 9

Hashing integers

« key space = integers

» Simple hash function:
h(key) = key % TableSize
— Client: £(x) = x
— Library g(x) = x % TableSize
— Fairly fast and natural

* Example:
- TableSize =10
— Insert 7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

o 0 NN AR WN = O

Fall 2013 CSE373: Data Structures & Algorithms 10

Hashing integers

» key space = integers

10
41

* Simple hash function:
h(key) = key % TableSize
— Client: £(x) = x
— Library g(x) = x % TableSize
— Fairly fast and natural

34

* Example:
- TableSize =10
— Insert7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

o 0 0NN AR WN =D

Fall 2013 CSE373: Data Structures & Algorithms 11

Collision-avoidance

* With “x % TableSize” the number of collisions depends on
— the ints inserted (obviously)
- TableSize

e Larger table-size tends to help, but not always
— Example: 70, 24, 56, 43, 10
with TableSize = 10 and TableSize = 60

» Technique: Pick table size to be prime. Why?
— Real-life data tends to have a pattern
— “Multiples of 61” are probably less likely than “multiples of 60”

— Next lecture shows one collision-handling strategy does
provably well with prime table size

Fall 2013 CSE373: Data Structures & Algorithms 12

More on prime table size

If TableSize is 60 and...
— Lots of data items are multiples of 5, wasting 80% of table
— Lots of data items are multiples of 10, wasting 90% of table
— Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61...
— Collisions can still happen, but 5, 10, 15, 20, ... will fill table
— Collisions can still happen but 10, 20, 30, 40, ... will fill table
— Collisions can still happen but 2, 4, 6, 8, ... will fill table

This “table-filling” property happens whenever the multiple and the
table-size have a greatest-common-divisor of 1

Fall 2013 CSE373: Data Structures & Algorithms 13

Okay, back to the client

» If keys aren’t ints, the client must convert to an int
— Trade-off: speed versus distinct keys hashing to distinct ints

* Very important example: Strings
— Key space K = 545,S,...5,1
 (where s, are chars: s; € [0,52] or s, € [0,256] or s; € [0,26])
— Some choices: Which avoid collisions best?

1. h(K)=s, % TableSize

m—1
2. hK)= [Z sij % TableSize
i=0

k—1
3. h(K)=(Z s5,-37" | % TableSize

i=0
Fall 2013 CSE373: Data Structures & Algorithms 14

Specializing hash functions

How might you hash differently if all your strings were web
addresses (URLs)?

Fall 2013 CSE373: Data Structures & Algorithms 15

Combining hash functions

A few rules of thumb / tricks:
1. Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash
— This is why a factor of 37" works better than 256!
— Example: “abcde” and “ebcda”

3. When smashing two hashes into one hash, use bitwise-xor
— bitwise-and produces too many 0 bits
— bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources
5. If keys are known ahead of time, choose a perfect hash

Fall 2013 CSE373: Data Structures & Algorithms 16

One expert suggestion

e intresult=17;
» foreach field f
— int fieldHashcode =
* boolean: (f?7 1: 0)
* byte, char, short, int: (int) f
* long: (int) (f * (f >>> 32))
« float: Float.floatTolntBits(f)
» double: Double.doubleTolLongBits(f), then above
» Object: object.hashCode()
— result = 31 * result + fieldHashcode

Fall 2013 CSE373: Data Structures & Algorithms 17

Hashing and comparing

» Need to emphasize a critical detail:
— We initially hash key E to get a table index
— To check an item is what we are looking for, compareTo E
* Does it have an equal key?

* So a hash table needs a hash function and a comparator

— The Java library uses a more object-oriented approach:
each object has methods equals and hashCode

class Object {
boolean equals (Object o) {..}
int hashCode () {..}

Fall 2013 CSE373: Data Structures & Algorithms 18

Equal Objects Must Hash the Same

* The Java library make a crucial assumption clients must satisfy
— And all hash tables make analogous assumptions

» Object-oriented way of saying it:
If a.equals (b), then a.hashCode () ==b.hashCode ()

* Why is this essential?
* Why is this up to the client?
* So always override hashCode correctly if you override equals

— Many libraries use hash tables on your objects

Fall 2013 CSE373: Data Structures & Algorithms 19

By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
— Dictionaries
— Sorting (future major topic)

Comparison must impose a consistent, total ordering:
Forall a, b, and ¢,
- a.compareTo(a) == 0
— Ifa.compareTo(b) < 0, thenb.compareTo(a) > 0

— If a.compareTo (b) == 0, thenb.compareTo(a) ==

— Ifa.compareTo(b) < 0andb.compareTo(c) < 0,
then a.compareTo(c) < 0

This is surprisingly awkward because of subclassing...

Fall 2013 CSE373: Data Structures & Algorithms 20

Example

class MyDate {
int month;
int year;
int day;

boolean equals (Object otherObject) ({
if (this==otherObject) return true; // common?
if (otherObject==null) return false;
if (getClass () '=other.getClass()) return false;
return month = otherObject.month
&& year = otherObject.year
&& day = otherObject.day;

}
// wrong: must also override hashCode!
}
Fall 2013 CSE373: Data Structures & Algorithms 21

Tougher example

* Suppose you had a Fraction class where equals returned
true for 1/2 and 3/6, etc.

* Then must override hashCode and cannot hash just based on
the numerator and denominator

— Need 1/2 and 3/6 to hash to the same int

« If you write software for a living, you are less likely to implement
hash tables from scratch than you are likely to encounter this
issue

Fall 2013 CSE373: Data Structures & Algorithms 22

Conclusions and notes on hashing

* The hash table is one of the most important data structures
— Supports only £ind, insert, and delete efficiently
— Have to search entire table for other operations

* Important to use a good hash function

» Important to keep hash table at a good size

» Side-comment: hash functions have uses beyond hash tables
— Examples: Cryptography, check-sums

» Big remaining topic: Handling collisions

Fall 2013 CSE373: Data Structures & Algorithms 23

