The plan

Last lecture:
- What are disjoint sets
 - And how are they “the same thing” as equivalence relations
- The union-find ADT for disjoint sets
- Applications of union-find

Now:
- Basic implementation of the ADT with “up trees”
- Optimizations that make the implementation much faster

Our goal

- Start with an initial partition of n subsets
 - Often 1-element sets, e.g., \{1\}, \{2\}, \{3\}, ..., \{n\}
- May have m find operations and up to $n-1$ union operations in any order
 - After $n-1$ union operations, every find returns same 1 set
- If total for all these operations is $O(m+n)$, then amortized $O(1)$
 - We will get very, very close to this
 - $O(1)$ worst-case is impossible for find and union
 - Trivial for one or the other

Up-tree data structure

- Tree with:
 - No limit on branching factor
 - References from children to parent
- Start with forest of 1-node trees
- Possible forest after several unions:
 - Will use roots for set names

Find

find(x):
- Assume we have $O(1)$ access to each node
 - Will use an array where index i holds node i
- Start at x and follow parent pointers to root
- Return the root

find(6) = 7

Union

union(x, y):
- Assume x and y are roots
 - Else find the roots of their trees
- Assume distinct trees (else do nothing)
- Change root of one to have parent be the root of the other
 - Notice no limit on branching factor

union(1,7)

Fall 2013 CSE373: Data Structures & Algorithms 6
Simple implementation

- If set elements are contiguous numbers (e.g., 1,2,...,n), use an array of length n called `up`:
 - Starting at index 1 on slides
 - Put in array index of parent, with 0 (or -1, etc.) for a root
- Example:

```
  1   2    3    4   5    6   7
  up 0 0 0 0 0 0 0
```

- If set elements are not contiguous numbers, could have a separate dictionary to map elements (keys) to numbers (values)

Implement operations

```c
// assumes x in range 1,n
int find(int x) {
  while(up[x] != 0) {
    x = up[x];
  }
  return x;
}

// assumes x,y are roots
void union(int x, int y) {
  up[y] = x;
}
```

- Worst-case run-time for `union`? $O(1)$
- Worst-case run-time for `find`? $O(n)$
- Worst-case run-time for m finds and n-1 unions? $O(n^m)$

The plan

- Last lecture:
 - What are *disjoint sets*
 - And how are they "the same thing" as *equivalence relations*
 - The union-find ADT for disjoint sets
 - Applications of union-find

Now:

- Basic implementation of the ADT with "up trees"
- Optimizations that make the implementation much faster

Two key optimizations

1. Improve `union` so it stays $O(1)$ but makes `find` $O(\log n)$
 - So m finds and n-1 unions is $O(m \log n + n)$
 - *Union-by-size*: connect smaller tree to larger tree
2. Improve `find` so it becomes even faster
 - Make m finds and n-1 unions *almost* $O(m + n)$
 - *Path-compression*: connect directly to root during finds

The bad case to avoid

```
  1   2   3  ...  n
union(2,1)

  1   2   3  ...  n
union(3,2)

  1   2   3  ...  n
union(n,n-1)
```

find(1) n steps!!
Weighted union

Weighted union:
- Always point the smaller (total # of nodes) tree to the root of the larger tree

Array implementation

Keep the weight (number of nodes in a second array)
- Or have one array of objects with two fields

Nifty trick

Actually we do not need a second array...
- Instead of storing 0 for a root, store negation of weight
- So up value < 0 means a root

General analysis

- Showing one worst-case example is now good is not a proof that the worst-case has improved
- So let's prove:
 - union is still O(1) – this is "obvious"
 - find is now O(log n)
- Claim: If we use weighted-union, an up-tree of height h has at least 2^h nodes
 - Proof by induction on h...
Exponential number of nodes

P(h) = With weighted-union, up-tree of height h has at least \(2^h\) nodes

Proof by induction on h...
- Base case: \(h = 0\): The up-tree has 1 node and \(2^0 = 1\)
- Inductive case: Assume P(h) and show P(h+1)
 - A height \(h+1\) tree \(T\) has at least one height \(h\) child \(T_1\)
 - \(T_1\) has at least \(2^h\) nodes by induction
 - And \(T\) has at least as many nodes not in \(T_1\) than in \(T_1\)
 - Else weighted-union would have had \(T\) point to \(T_1\), not \(T_1\) point to \(T\) (!!)
 - So total number of nodes is at least \(2^h + 2^h = 2^{h+1}\).

The key idea

Intuition behind the proof: No one child can have more than half the nodes

So, as usual, if number of nodes is exponential in height, then height is logarithmic in number of nodes

So \(\text{find}\) is \(O(\log n)\)

The new worst case

\(n/2\) Weighted Unions

\(n/4\) Weighted Unions

The new worst case (continued)

After \(n/2 + n/4 + \ldots + 1\) Weighted Unions:

Height grows by 1 a total of \(\log n\) times

What about union-by-height

We could store the height of each root rather than number of descendants (weight)
- Still guarantees logarithmic worst-case find
 - Proof left as an exercise if interested
- But does not work well with our next optimization
 - Maintaining height becomes inefficient, but maintaining weight still easy

Two key optimizations

1. Improve \(\text{union}\) so it stays \(O(1)\) but makes \(\text{find}\) \(O(\log n)\)
 - So \(m\) finds and \(n-1\) unions is \(O(m \log n + n)\)
 - \(\text{Union-by-size}\): connect smaller tree to larger tree

2. Improve \(\text{find}\) so it becomes even faster
 - Make \(m\) finds and \(n-1\) unions almost \(O(m + n)\)
 - \(\text{Path-compression}\): connect directly to root during finds
Path compression

- Simple idea: As part of a find, change each encountered node’s parent to point directly to root
 - Faster future finds for everything on the path (and their descendants)

Pseudocode

```c
// performs path compression
int find(i) {
    // find root
    int r = i
    while(up[r] > 0)
        r = up[r]
    // compress path
    if i==r
        return r;
    int old_parent = up[i]
    while(old_parent != r) {
        up[i] = r
        i = old_parent;
        old_parent = up[i]
    }
    return r;
}
```

So, how fast is it?

A single worst-case find could be $O(\log n)$
 - But only if we did a lot of worst-case unions beforehand
 - And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than $O(\log n)$
 - We won’t prove it – see text if curious
 - But we will understand it:
 - How it is almost $O(1)$
 - Because total for m finds and $n-1$ unions is almost $O(m+n)$

A really slow-growing function

$\log^* x$ is the minimum number of times you need to apply “log of log of log of…” to go from x to a number <= 1

For just about every number we care about, $\log^* x$ is 5 (!)
If $x \leq 2^{65536}$ then $\log^* x \leq 5$
- $\log^* 2 = 1$
- $\log^* 4 = \log^* 2^2 = 2$
- $\log^* 16 = \log^* 2^{2^2} = 3$ (Log log log 16 = 1)
- $\log^* 65536 = \log^* 2^{2^{2^2}} = 4$ (Log log log log 65536 = 1)
- $\log^* 2^{65536} = \ldots = 5$

Almost linear

- Turns out total time for m finds and $n-1$ unions is $O((m+n)(\log^* (m+n)))$
 - Remember, if $m+n < 2^{65536}$ then $\log^* (m+n) < 5$
- At this point, it feels almost silly to mention it, but even that bound is not tight…
 - “Inverse Ackerman’s function” grows even more slowly than \log^*
 - Inverse because Ackerman’s function grows really fast
 - Function also appears in combinatorics and geometry
 - For any number you can possibly imagine, it is < 4
 - Can replace \log^* with “Inverse Ackerman’s” in bound

Theory and terminology

- Because \log^* or Inverse Ackerman’s grows sooo slowly
 - For all practical purposes, amortized bound is constant, i.e.,
 total cost is linear
 - We say “near linear” or “effectively linear”
- Need weighted-union and path-compression for this bound
 - Path-compression changes height but not weight, so they interact well
- As always, asymptotic analysis is separate from “coding it up”