
Page 1 of 3

CSE 373 Data Structures 13au, Homework 2

Due at the BEGINNING of class, Friday, 10/11/2013

Here are five questions on complexity and algorithm analysis. You only need to turn in

written (or printed) solutions, although you will need to write and run some code for one

of the problems.

Problems

1. Prove (using induction) that for all N greater than or equal to 1:

 


N

i

N

i
ii

1

2

1

3)(

Hints:

 Start with N=1 as the base case. In the inductive case, start with 




1

1

3N

i
i

and show via a sequence of steps, including one step that uses the induction

hypothesis, that it is equal to 




1

1

2)(
N

i
i .

 You already know what the sum of  

N

i
i

1 is for any N (we discussed it in

class), and you should use this fact a couple of times in your inductive case.

 You will also need to do a little bit of factoring and other algebra

manipulations.

2. Order the following functions from slowest growth rate to fastest growth rate.

N
2
, N logN, 2/N, log

2
 N, 2

N
, √ , 56, N

2
log N, N

1.5
,

2
N/2

, log N, N log (N
2
), N

5
, N log log N, N log

2
 N, N.

If any of the functions grow at the same rate, be sure to indicate this.

3. Suppose T1(N) is O(f(N)) and T2(N) is O(f(N)). Which of the following are always

true (for all T1, f, and T2)?

a. T1(N) / T2(N) is O(1)

b. T1(N) – T2(N) is (f(N)) (notice here we are using “big-Theta”)

c. T1(N) + T2(N) is O(f(N))

d. T1(N) is O(T2(N))

You do not need to prove an item is true (just saying true is enough for full credit),

but if an item is false need to give a counterexample to demonstrate it is false. To

Page 2 of 3

give a counterexample, give values for T1(N), T2(N), and f(N) for which the statement

is false (for example, you could write, “The statement is false if T1(N)=100N,

T2(N)=2N
2
 and f(N)=N

3
”). Hints: Think about the definitions of big-O and big-.

4. For each of the following seven program fragments:

a. Give an asymptotic analysis of the running time using big-O (or big-, which

would technically be more precise)

b. Implement the code in Java, and give the actual running time for several (at

least 4) values of N.

c. Compare your analysis with the actual running times.

For part (b), please turn in a printout of your Java code, (no electronic submission

required). Hints: you will want to use assorted (at least 4) large values of n to get

meaningful experimental results. You may find the library function

System.nanoTime() to be useful in timing code fragments. A link to some Java

code showing an example of timing can be found at

http://courses.cs.washington.edu/courses/cse373/13au/Timing.java

1) sum = 0;
 for (i = 0; i < n; i++) {

 sum++;

 }

2) sum = 0;
 for (i = 0; i < n; i++) {

 for (j = 0; j < n; j++) {

 sum++;

 }

 }

3) sum = 0;
 for (i = 0; i < n; i++) {

 for (j = 0; j < i; j++) {

 sum++;

 }

 }

4) sum = 0;
 for (i = 0; i < n; i++) {

 for (j = 0; j < n * n; j++) {

 sum++;

 }

 }

5) sum = 0;
 for (i = 0; i < n; i++) {

 for (j = 0; j < i; j++) {

 sum++;

 }

 for (k = 0; k < 8000; k++) {

 sum++;

 }

 }

http://courses.cs.washington.edu/courses/cse373/13au/Timing.java

Page 3 of 3

6) sum = 0;
 for (i = 1; i < n; i++) {

 for (j = 1; j < i*i; j++) {

 if (j % i == 0) {

 for (k = 0; k < j; k++) {

 sum++;

 }

 }

 }

 }

7) sum = 0;
 for (i = 0; i < n; i++) {

 for (j = 0; j < i * i; j++) {

 sum++;

 }

 }

Note that there are THREE parts to this question, do all three. a) calculate big-O, b) run

the code for several values of N (4 or more) and time it, c) discuss what you see. For part

(c), be sure to say something about what you saw in your run-times, are they what you

expected based on your big-O calculations? If not, any ideas why not? Graphing the

values you got from part (b) might be useful for your discussion. Remember that when

giving the big-O running time for a piece of code we always prefer the tightest bound we

can get.

It is entirely possible that your run-times will not be exactly what you might predict

because Java compilers and modern computers are sophisticated and do many things

more than just “naively run your code.” That is okay (though do make sure your code is

implemented correctly). You will hopefully still at least see some relative trends for

different values of N, but in any case report what you observe and your best possible

explanations for what you are seeing.

5. Show that the function 6n
3
 + 30n + 503 is O(n

3
). You will need to use the definition

of O(f(n)) to do this. In other words, find values for c and n0 such that the definition

of big-O holds true as we did with the examples in lecture.

