Graphs: Topological Sort / Graph Traversals (Chapter 9)

CSE 373
Data Structures and Algorithms

Today’s Outline

• Admin:
 – HW #4 due Tuesday, Feb 21 at 11pm
 – Midterm 2, Fri Feb 24
• Graphs
 – Representations
 – Topological Sort
 – Graph Traversals

Topological Sort

Problem: Given a DAG \(G = (V, E) \), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

142, 143, 374, 373, 415, 413, 410, 417

Questions and comments

• Why do we perform topological sorts only on DAGs?
• Is there always a unique answer?
• What DAGs have exactly 1 answer?
• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it.
Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer
- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
- What DAGs have exactly 1 answer?
 - Lists
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to graduate
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution

A first algorithm for topological sort

1. Label each vertex with its in-degree
 - Labeling also called marking
 - Think “write in a field in the vertex”; though you could also do this with a data structure (e.g., array) on the side
2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and “remove it” (conceptually) from the graph
 c) For each vertex \(u \) adjacent to \(v \)(i.e. \(u \) such that \((v,u) \) in \(E \)),
 decrement the in-degree of \(u \)

Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x
In-degree: 0 0 2 1 2 1 1 1 1 1 1 1

Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x
In-degree: 0 0 2 1 2 1 1 1 1 1 1 1
A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders

Running time?

• What is the worst-case running time?
 - Initialization $O(|V| + |E|)$
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2 + |E|)$ - not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = $ dequeue()
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u, if new degree is 0, enqueue it
Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0) enqueue(w);
    }
}
```

Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0) enqueue(w);
    }
}
```

- What is the worst-case running time?
 - Initialization: $O(|V| + |E|)$
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ – much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e., there exists a path) from v
- Possibly “do something” for each node (an iterator!)
 - E.g. Print to output, set some field, etc.

Abstract idea

```java
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if u is not marked {
                mark u
                pending.add(u)
            }
    }
}
```

Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
- The order we traverse depends entirely on add and remove
 - Popular choice: a stack “depth-first graph search” “DFS”
 - Popular choice: a queue “breadth-first graph search” “BFS”
- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first

Recursive DFS, Example : trees

```java
DFS(Node start) {
    mark and “process”[e.g. print] start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A tree is a graph and DFS and BFS are particularly easy to “see”
- Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once
DFS with a stack, Example: trees

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and "process"
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

• Order processed: A, C, F, H, G, B, E, D
• A different but perfectly fine traversal

BFS with a queue, Example: trees

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue
 // and "process"
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• Order processed: A, B, C, D, E, F, G, H
• A "level-order" traversal

Comparison

• Breadth-first always finds shortest paths – “optimal solutions”
 – Better for “what is the shortest path from x to y”
• But depth-first can use less space in finding a path
 – If longest path in the graph is p and highest out-degree is d
 – But a queue for BFS may hold O(|V|) nodes

Saving the path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node x to node y?”
• But what if we want to actually output the path?
 – Like getting driving directions rather than just knowing it’s possible to get there!
• Easy:
 – Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 – When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Example using BFS

What is a path from Seattle to Tyler
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique