Graphs: Definitions and Representations
(Chapter 9)

CSE 373
Data Structures and Algorithms

Today’s Outline
• Admin:
 – HW #4 due Tuesday, Feb 21 at 11pm
 – Midterm 2, Fri Feb 24
• Memory hierarchy
 • Graphs
 – Representations

Graphs
• A graph is a formalism for representing relationships among items
 – Very general definition because very general concept
• A graph is a pair
 \[G = (V, E) \]
 – A set of vertices, also known as nodes
 \[V = \{ v_1, v_2, \ldots, v_n \} \]
 – A set of edges
 \[E = \{ e_1, e_2, \ldots, e_m \} \]
 – Each edge \(e_i \) is a pair of vertices
 \((v_j, v_k) \)
 – An edge “connects” the vertices
• Graphs can be directed or undirected

An ADT?
• Can think of graphs as an ADT with operations like
 \(\text{isEdge}(v_j, v_k) \)
• But what the “standard operations” are is unclear
• Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
• Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm
• To make the formulation easy and standard, we have a lot of standard terminology about graphs

Some graphs
For each, what are the vertices and what are the edges?
• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• …

Undirected Graphs
• In undirected graphs, edges have no specific direction
 – Edges are always “two-way”
• Thus, \((u, v) \in E \) implies \((v, u) \in E \)
 – Only one of these edges needs to be in the set; the other is implicit
• Degree of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices
Directed graphs

- In directed graphs (sometimes called digraphs), edges have a specific direction
 - Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
 - Let \((u, v) \in E\) mean \(u \rightarrow v\) and call \(u\) the source and \(v\) the destination
 - In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
 - Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source

Self-edges, connectedness, etc.

- A self-edge a.k.a. a loop is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (in which case often implicit, but we will be explicit)
 - A node can have a degree / in-degree / out-degree of zero
 - A graph does not have to be connected (In an undirected graph, this means we can follow edges from any node to every other node), even if every node has non-zero degree

More notation

For a graph \(G = (V, E)\):

- \(|V|\) is the number of vertices
- \(|E|\) is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?
- If \((u, v) \in E\)
 - Then \(v\) is a neighbor of \(u\), i.e., \(v\) is adjacent to \(u\)
 - Order matters for directed edges

Examples again

Which would use directed edges? Which would have self-edges? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Weighted graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many don’t

- Weighted Graph Example
 - Clinton
 - Mukilteo
 - Kingston
 - Edmonds
 - Bainbridge
 - Seattle
 - Bremerton
Examples

What, if anything, might *weights* represent for each of these? Do *negative weights* make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Paths and Cycles

- A *path* is a list of vertices \(v_0, v_1, \ldots, v_n \) such that \((v_i, v_{i+1}) \in E \) for all \(0 \leq i < n \). Say "a path from \(v_0 \) to \(v_n \)."

- A *cycle* is a path that begins and ends at the same node (\(v_0 = v_n \)).

![Example path (that also happens to be a cycle): Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Undirected graph connectivity

- An undirected graph is connected if for all pairs of vertices \(u, v \), there exists a path from \(u \) to \(v \).

![Connected graph](image1)

![Disconnected graph](image2)

- An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices \(u, v \), there exists an edge from \(u \) to \(v \).

Directed graph connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex.

- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges.

- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex.

Examples

For undirected graphs: connected?
- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Trees as graphs

When talking about graphs, we say a tree is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees.

How does this relate to the trees we know and love?...

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique (“special”) root
 - We think of edges as directed: parent to children

- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges).

Rooted Trees (Another example)

- We are more accustomed to rooted trees where:
 - We identify a unique (“special”) root
 - We think of edges as directed: parent to children

- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges).
Directed acyclic graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- …

Density / sparsity

- Recall: In an undirected graph, $0 \leq |E| < |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $|E|$ is $O(|V|^2)$
- One more fact: If an undirected graph is connected, then $|E| \geq |V| - 1$
- Because $|E|$ is often much smaller than its maximum size, we do not always approximate as $|E|$ as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., $|E| = \Theta(|V|)$, we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If $|E|$ is $O(|V|)$ we say the graph is sparse
 - More sloppily, sparse means "most (possible) edges missing"

What's the data structure?

Things we might want to do:

- Iterate over vertices
- Iterate over edges
- Iterate over vertices adjacent to a vertex
- Check whether an edge exists
- Find the lowest-cost path from x to y

Which data structure is "best" can depend on:

- Properties of the graph (e.g., dense versus sparse)
- The common queries (e.g., "is (u, v) an edge?" versus "what are the neighbors of node u?")

We need a data structure that represents graphs:

- List of vertices + list of edges (rarely good enough)
- Adjacency Matrix
- Adjacency List

Adjacency matrix

Assign each node a number from 0 to $|V| - 1$

- A $|V| \times |V|$ matrix (i.e., 2-D array) of booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ == true means there is an edge from u to v

Adjacency matrix properties

- Running time:
 - Get a vertex’s out-edges:
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:
 - Best for sparse or dense graphs?
Adjacency matrix properties

• Running time to:
 – Get a vertex’s out-edges: $O(|V|)$
 – Get a vertex’s in-edges: $O(|V|)$
 – Decide if some edge exists: $O(1)$
 – Insert an edge: $O(1)$
 – Delete an edge: $O(1)$

• Space requirements:
 – $|V|^2$ bits
 – Best for dense graphs

Adjacency matrix properties (cont.)

• How will the adjacency matrix vary for an undirected graph?
 – Undirected: Will be symmetric about diagonal axis

• How can we adapt the representation for weighted graphs?
 – Instead of a boolean, store an int/double in each cell
 – Need some value to represent ‘not an edge’
 • Say -1 or 0

Adjacency List

• Assign each node a number from 0 to $|V| - 1$
• An array of length $|V|$ in which each entry stores a list (e.g., linked list) of all adjacent vertices

Adjacency List Properties

• Running time to:
 – Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 – Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!) (e.g.,
 – Decide if some edge exists: $O(d)$ where d is out-degree of source
 – Insert an edge: $O(1)$
 – Delete an edge: $O(d)$ where d is out-degree of source

• Space requirements:
 – $O(|V| + |E|)$
 – Best for sparse graphs: so usually just stick with linked lists

Adjacency List

Undirected graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs
• Matrix: Could save space; only ~1/2 the array is used
• Lists: Each edge in two lists to support efficient “get all neighbors”

Example:
Next...

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- **Shortest paths**: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path