Today’s Outline

- Announcements
 - Homework #3 due 11pm tonight
 - Homework #4 coming soon:
 - Java programming: disjoint sets and mazes
 - due Tues, Feb 21st
 - partners allowed- MUST declare by 11pm Mon Feb 13th
 - Midterm #2 – Fri, Feb 24
- Today’s Topics:
 - Disjoint Sets & Dynamic Equivalence
 - Hashing

The Dictionary ADT

- Data:
 - a set of (key, value) pairs
- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

The Dictionary ADT is sometimes called the "Map ADT"

Dictionary Implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Find</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Sorted array</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL Tree</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If we do not allow duplicate values to be inserted, we would need to do O(n) work (a find operation) to check for a key’s existence before insertion.

Hash Tables

- Constant time accesses!
- A hash table is an array of some fixed size, usually a prime number.
- General idea:

 hash function: \(h(K) \)

 hash table

 key space (e.g., integers, strings) TableSize = 1

Hash Tables

Key space of size M, but we only want to store subset of size N, where N<M.

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.
Example

- key space = integers
- TableSize = 10
- \(h(K) = K \mod 10 \)
- Insert: 7, 18, 41, 94

Another Example

- key space = integers
- TableSize = 6
- \(h(K) = K \mod 6 \)
- Insert: 7, 18, 41, 34

Hash Functions

1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:

Sample Hash Functions:

- key space = strings
- \(s = s_0 \ s_1 \ s_2 \ldots \ s_{k-1} \)
1. \(h(s) = s_0 \mod \text{TableSize} \)
2. \(h(s) = \left(\sum_{i=0}^{k-1} s_i \right) \mod \text{TableSize} \)
3. \(h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37 \right) \mod \text{TableSize} \)

Designing a Hash Function for web URLs

\(s = s_0 \ s_1 \ s_2 \ldots \ s_{k-1} \)

Issues to take into account:

\(h(s) = \)

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)
Separate Chaining

Insert:
10
22
107
12
42

- **Separate chaining:**
 All keys that map to the same hash value are kept in a list ("bucket").

Analysis of find

- The load factor, λ, of a hash table is the ratio:
 \[
 \frac{N}{M} \leftarrow \text{no. of elements} \\
 \frac{N}{M} \leftarrow \text{table size}
 \]
 For separate chaining, $\lambda = \text{average # of elements in a bucket}$

 - unsuccessful:
 - successful:

How big should the hash table be?

- For Separate Chaining:

Open Addressing

- **Linear Probing:** after checking spot $h(k)$, try spot $h(k)+1$, if that is full, try $h(k)+2$, then $h(k)+3$, etc.

tableSize: Why Prime?

- Suppose
 - data stored in hash table: 7160, 493, 60, 55, 321, 900, 810
 - tableSize = 10
 data hashes to 0, 3, 9, 5, 1, 0, 0
 - tableSize = 11
 data hashes to 10, 9, 5, 0, 2, 9, 7

- \[\text{Real-life data tends to have a pattern} \]
- \[\text{Being a multiple of 11 is usually not the pattern} \]
Linear Probing

\[f(i) = i \]

- Probe sequence:

 0th probe = \(h(k) \mod \text{TableSize} \)

 1st probe = \(h(k) + 1 \mod \text{TableSize} \)

 2nd probe = \(h(k) + 2 \mod \text{TableSize} \)

 ...

 ith probe = \(h(k) + i \mod \text{TableSize} \)

Load Factor in Linear Probing

- For any \(\lambda < 1 \), linear probing will find an empty slot
- Expected # of probes (for large table sizes)

 - successful search:
 \[\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right) \]

 - unsuccessful search:
 \[\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)^2 \]

 - Linear probing suffers from primary clustering
 - Performance quickly degrades for \(\lambda > 1/2 \)

Quadratic Probing

\[f(i) = i^2 \]

- Probe sequence:

 0th probe = \(h(k) \mod \text{TableSize} \)

 1st probe = \(h(k) + 1 \mod \text{TableSize} \)

 2nd probe = \(h(k) + 4 \mod \text{TableSize} \)

 3rd probe = \(h(k) + 9 \mod \text{TableSize} \)

 ...

 ith probe = \(h(k) + i^2 \mod \text{TableSize} \)

Quadratic Probing:

- \(h(k) = k \mod 7 \)
- Perform these inserts:

 - Insert(89)

 - Insert(18)

 - Insert(49)

 - Insert(58)

 - Insert(79)
Quadratic Probing Example

- Insertion of values:
 - `76`: `76%7 = 6`
 - `40`: `40%7 = 5`
 - `48`: `48%7 = 6`
 - `5`: `5%7 = 5`
 - `55`: `55%7 = 6`
 - `47`: `47%7 = 5`

But...

Quadratic Probing: Success guarantee for \(\lambda < \frac{1}{2} \)

- If size is prime and \(\lambda < \frac{1}{2} \), then quadratic probing will find an empty slot in \(\text{size}/2 \) probes or fewer.
 - Show for all \(0 \leq i, j \leq \text{size}/2 \) and \(i \neq j \):
 - \((h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size}\)
 - By contradiction: suppose that for some \(i \neq j \):
 - \((h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}\)
 - \(i^2 \mod \text{size} = j^2 \mod \text{size}\)
 - \((i - j)(i + j) \mod \text{size} = 0\)
 - \(\text{But size does not divide } (i-j) \Rightarrow (i+j)\)

Quadratic Probing: Properties

- For any \(\lambda < \frac{1}{2} \), quadratic probing will find an empty slot; for bigger \(\lambda \), quadratic probing may find a slot.
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad.
- But what about keys that hash to the same spot? — Secondary Clustering!

Double Hashing

- \(f(i) = i \cdot g(k) \) where \(g \) is a second hash function.
- Probe sequence:
 - 0th probe: \(h(k) \mod \text{TableSize} \)
 - 1st probe: \((h(k) + g(k)) \mod \text{TableSize} \)
 - 2nd probe: \((h(k) + 2g(k)) \mod \text{TableSize} \)
 - 3rd probe: \((h(k) + 3g(k)) \mod \text{TableSize} \)
 - ... \(i^{th} \) probe: \((h(k) + i \cdot g(k)) \mod \text{TableSize} \)

Resolving Collisions with Double Hashing

<table>
<thead>
<tr>
<th>Hash Functions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(k) = k \mod M)</td>
</tr>
<tr>
<td>(h(k) = 1 + (k/M) \mod (M-1))</td>
</tr>
<tr>
<td>(M =)</td>
</tr>
</tbody>
</table>

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 147
- 43
Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

• When to rehash?
 – half full ($\lambda = 0.5$)
 – when an insertion fails
 – some other threshold

• Cost of rehashing?

Hashing Summary

• Hashing is one of the most important data structures.
• Hashing has many applications where operations are limited to find, insert, and delete.
• Dynamic hash tables have good amortized complexity.