Kruskal's Algorithm Implementation

Kruskals():

sort edges in increasing order of length \((e_1, e_2, e_3, ..., e_m)\).

\[T := \emptyset. \]

\[
\text{for } i = 1 \text{ to } m \\
\quad \text{if } e_i \text{ does not add a cycle:} \\
\qquad \text{add } e_i \text{ to } T. \\
\]

return \(T\).

How can we determine that adding \(e_i\) to \(T\) won't add a cycle?
Disjoint-set Data Structure

- Keeps track of a set of elements partitioned into a number of disjoint subsets
 - Two sets are *disjoint* if they have no elements in common

- Initially, each element e is a set in itself:
 - e.g., $\{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_6\}, \{e_7\}\}$
Operations: Union

- Union(x, y) – Combine or merge two sets x and y into a single set

 Before:

 \{\{e_3, e_5, e_7\}, \{e_4, e_2, e_8\}, \{e_9\}, \{e_1, e_6\}\}

 After Union(e_5, e_1):

 \{\{e_3, e_5, e_7, e_1, e_6\}, \{e_4, e_2, e_8\}, \{e_9\}\}
Operations: Find

- Determine which set a particular element is in
 - Useful for determining if two elements are in the same set

- Each set has a unique name
 - Name is arbitrary; what matters is that \(\text{find}(a) == \text{find}(b) \) is true only if \(a \) and \(b \) in the same set
 - One of the members of the set is the "representative" (i.e., name) of the set
 - e.g., \{e_3, e_5, e_7, e_1, e_6\}, \{e_4, e_2, e_8\}, \{e_9\}
Operations: Find

- Find(x) – return the name of the set containing x.
 - $\{e_3, e_5, e_7, e_1, e_6\}$, $\{e_4, e_2, e_8\}$, $\{e_9\}$
 - Find(e_1) = e_5
 - Find(e_4) = e_8
Kruskal's Algorithm (Revisited)

Kruskals():
 sort edges in increasing order of length $(e_1, e_2, e_3, ..., e_m)$.

 initialize disjoint sets.

 $T := \emptyset$.

 for $i = 1$ to m
 let $e_i = (u, v)$.
 if find(u) != find(v)
 union(find(u), find(v)).
 add e_i to T.

 return T.

- What does the disjoint set initialize to?
- Assuming n nodes and m edges:
 - How many times do we do a union?
 $n-1$
 - How many times do we do a find?
 $2 \times m$
 - What is the total running time?
 $O(m \log m + U \times n + F \times m)$
Disjoint Sets with Linked Lists

- **Approach 1**: Create a linked list for each set.
 - Last/first element is representative
 - Cost of union? find?
 - $O(1)$ $O(n)$

- **Approach 2**: Create linked list for each set. Every element has a reference to its representative.
 - Last/first element is representative
 - Cost of union? find?
 - $O(n)$ $O(1)$
Disjoint Sets with Trees

- Observation: *trees* let us find many elements given one root (i.e. representative)

- Idea: If we reverse the pointers (make them point up from child to parent), we can find a single root from many elements.

- Idea: Use one tree for each subset. The name of the class is the tree root.
Up-Tree for Disjoint Sets

Initial state

Intermediate state

Roots are the names of each set.
Union Operation

- Union(x, y) – assuming x and y roots, point x to y.

Diagram:

```
  1 -- 3 -- 7
  |    |    |
  2    5   4
     / 
    6
```

Union(1, 7)
Find Operation

- Find(x): follow x to root and return root

Find(6) = 7
Simple Implementation

- Array of indices

<table>
<thead>
<tr>
<th>up</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>7</th>
<th>7</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

$\text{Up}[x] = 0$ means x is a root.
void Union(int[] up, int x, int y) {
 // precondition: x and y are roots
 up[x] = y
}

Constant Time!
Exercise: Write an iterative version of Find.
A Bad Case

Find(1) \[n \text{ steps}!! \]
Improving Find

- Improve union so that find only takes $\Theta(\log n)$
 - Union-by-size

- Improve find so that it becomes even better!
 - Path compression
Union by Rank

- Union by Rank (also called Union by Size)
 - Always point the smaller tree to the root of the larger tree

![Diagram of Union by Rank tree](image-url)
Example Again

\[
\begin{array}{c}
1 & 2 & 3 & \cdots & n \\
\downarrow & \downarrow & \downarrow & \cdots & \downarrow \\
2 & 3 & \cdots & n \\
\downarrow & \downarrow & \downarrow & \cdots & \downarrow \\
1 & 3 \\
\downarrow & \downarrow \\
2 \\
\end{array}
\]

Union(1,2)

Union(2,3)

\vdots

Union(n-1,n)

Find(1) \text{ constant time}
Runtime for Find via Union by Rank

- Depth of tree affects running time of Find
- Union by rank only increases tree depth if depth were equal
- Results in $O(\log n)$ for Find
Elegant Array Implementation

```
   2 1 3
  / \ / \ /
3   4 5   6
  |   |   |   \\
2   4 3   7
    \  \  /  /
     0 1 0 7 7 5 0
      \   \   \\
       2   1   4
```

up
weight
Union by Rank

```c
void Union(int i, int j){
    // i and j are roots
    wi = weight[i];
    wj = weight[j];
    if wi < wj then
        up[i] = j;
        weight[j] = wi + wj;
    else
        up[j] = i;
        weight[i] = wi + wj;
}
```
Kruskal's Algorithm (Revisited)

\[\textbf{Kruskals()}: \]
\begin{itemize}
 \item sort edges in increasing order of length \(e_1, e_2, e_3, \ldots, e_m \).
 \item initialize disjoint sets.
 \item \(T := \{\} \).
 \item \textbf{for} \(i = 1 \text{ to } m \)
 \item \hspace{1em} \textbf{let} \(e_i = (u, v) \).
 \item \hspace{2em} \textbf{if} \(\text{find}(u) \neq \text{find}(v) \)
 \item \hspace{3em} \textbf{union}(\text{find}(u), \text{find}(v)).
 \item \hspace{4em} \textbf{add} \(e_i \) \textbf{to} \(T \).
 \item \textbf{return} \(T \).
\end{itemize}

\[|E| = m \text{ edges, } |V| = n \text{ nodes} \]
\[\text{Sort edges: } O(m \log m) \]
\[\text{Initialization: } O(n) \]
\[\text{Finds: } O(2 \times m \times \log n) \]
\[= O(m \log n) \]
\[\text{Unions: } O(n) \]

Total running time:
\[O (m \log m + n + m \log n + n) \]
\[= O(m \log n) \]

\[\text{Note: } \log n \text{ and } \log m \text{ are within a constant factor of one another (Why?)} \]
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Self-Adjustment Works

Path Compression-Find(x)
Path Compression Exercise:

- Draw the resulting up tree after Find(e) with path compression.
void PC-Find(int i) {
 r = i;
 while up[r] ≠ 0 do // find root
 r = up[r];
 if i ≠ r then // compress path
 k = up[i];
 while k ≠ r do
 up[i] = r;
 i = k;
 k = up[k]
 return r;
}
Other Applications of Disjoint Sets

- Good for applications in need of clustering
 - Cities connected by roads
 - Cities belonging to the same country
 - Connected components of a graph

- Forming equivalence classes (see textbook)

- Maze creation (see textbook)