Problem: Find an order in which all these courses can be taken.

Example: 142 → 143 → 331
→ 351 → 311 → 332 → 312
→ 421 → 401

In order to take a course, you must take all of its prerequisites first.
Topological Sort

- In $G = (V, E)$, find total ordering of vertices such that for any edge (v, w), v precedes w in the ordering.
Topological Sort: Good Example

- Any total ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.
Topological Sort: Bad Example

- Any ordering in which an arrow goes to the left is not a valid solution
Only acyclic graphs can be topo sorted

- A directed graph with a cycle cannot be topologically sorted.
Topological Sort Algorithm: Step 1

- **Step 1**: Identify vertices that have no incoming edges
 - The “in-degree” of these vertices is zero
Topological Sort Algorithm: Step 1a

- **Step 1:** Identify vertices that have no incoming edges
 - If no such vertices, graph has cycle(s)
 - Topological sort not possible – Halt.

Example of a cyclic graph:

![Diagram of a cyclic graph](image-url)
Topological Sort Algorithm: Step 1b

- **Step 1**: Identify vertices that have no incoming edges
 - Select one such vertex

Select A, B, C, F, D, E
Topological Sort Algorithm: Step 2

- **Step 2**: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Topological Sort Algorithm: Repeat

- Repeat Step 1 and Step 2 until graph is empty

Select

Diagram:
- B
- C
- D
- E
- F
- A

Steps:
1. Select A
2. Remove A from graph
3. Continue until graph is empty
Select B. Copy to sorted list. Delete B and its edges.
Select C. Copy to sorted list. Delete C and its edges.
Select D. Copy to sorted list. Delete D and its edges.
Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.
Done
Topological Sort Algorithm

1. Store each vertex’s In-Degree in an hash table \(D \)
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 a) Dequeue and output a vertex
 b) Reduce In-Degree of all vertices adjacent to it by 1
 c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Pseudocode

Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x]; // y gets a linked list of adjacent vertices
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q, y.value);
 y := y.next;
 endwhile
endwhile
Topological Sort with Queue

Queue (before):
Queue (after): 1, 6

Answer:
Topological Sort with Queue

Queue (before): 1, 6
Queue (after): 6, 2

Answer: 1
Topological Sort with Queue

Queue (before): 6, 2
Queue (after): 2

Answer: 1, 6
Topological Sort with Queue

Queue (before): 2
Queue (after): 3

Answer: 1, 6, 2
Topological Sort with Queue

Queue (before): 3
Queue (after): 4

Answer: 1, 6, 2, 3
Topological Sort with Queue

Queue (before): 4
Queue (after): 5

Answer: 1, 6, 2, 3, 4
Topological Sort with Queue

Queue (before): 5
Queue (after):

Answer: 1, 6, 2, 3, 4, 5
Topological Sort Fails (cycle)

Queue (before):
Queue (after): 1

Answer:
Topological Sort Fails (cycle)

Queue (before): 1
Queue (after): 2

Answer: 1
Topological Sort Fails (cycle)

Queue (before): 2
Queue (after):

Answer: 1, 2
Topological Sort Runtime?

Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x]; // y gets a linked list of adjacent vertices
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile
Topological Sort Analysis

- Initialize In-Degree map: $O(|V| + |E|)$
- Initialize Queue with In-Degree 0 vertices: $O(|V|)$
- Dequeue and output vertex:
 - $|V|$ vertices, each takes only $O(1)$ to dequeue and output: $O(|V|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 - $O(|E|)$
- Runtime = $O(|V| + |E|)$

 Linear!
Minimum Spanning Tree

- **tree**: a connected, directed acyclic graph
- **spanning tree**: a subgraph of a graph, which meets the constraints to be a tree (connected, acyclic) and connects every vertex of the original graph
- **minimum spanning tree**: a spanning tree with weight less than or equal to any other spanning tree for the given graph
Minimum Spanning Tree: Applications

- Consider a cable TV company laying cable to a new neighborhood
 - Can only bury the cable only along certain paths
 - Some of paths may be more expensive (i.e. longer, harder to install)
 - A spanning tree for that graph would be a subset of those paths that has no cycles but still connects to every house.

- Similar situations
 - Installing electrical wiring in a house
 - Installing computer networks between cities
 - Building roads between neighborhoods
Spanning Tree Problem

- **Input:** An undirected graph $G = (V, E)$. G is connected.
- **Output:** T subset of E such that
 - (V, T) is a connected graph
 - (V, T) has no cycles
Spanning Tree Pseudo-code

`spanningTree()`:
- **pick random vertex v.**
- \(T := {} \)
- `spanningTree(v, T)`
- `return T`.

`spanningTree(v, T)`:
- **mark v as visited.**
- **for each neighbor \(v_i \) of v where there is an edge from v:**
 - **if \(v_i \) is not visited**
 - **add edge \((v, v_i)\) to T.**
 - `spanningTree(v_i, T)`
- `return T`.
Example of Depth First Search
Example Step 2

{1,2}

\[
\begin{array}{c}
1 & \quad & 2 \\
1 & - & \text{ST(1)} \\
& & ST(2)
\end{array}
\]
Example Step 3

{1,2} {2,7}
Example Step 4

\{1,2\} \{2,7\} \{7,5\}
Example Step 5

\{1, 2\} \{2, 7\} \{7, 5\} \{5, 4\}

ST(1)
ST(2)
ST(7)
ST(5)
ST(4)
Example Step 6

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\}
Example Step 7

{1,2} {2,7} {7,5} {5,4} {4,3}

ST(1) ST(2) ST(7) ST(5) ST(4) ST(3)
Example Step 8

{1,2} {2,7} {7,5} {5,4} {4,3}
Example Step 9

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\}
Example Step 10

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\}
Example Step 11

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}

ST(1)
ST(2)
ST(7)
ST(5)
ST(6)
Example Step 12

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}
Example Step 13

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}

ST(1)
ST(2)
ST(7)
ST(5)
Example Step 14

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}
Example Step 15

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}
Example Step 16

ST(1)

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}
Minimum Spanning Tree Problem

- Input: Undirected Graph \(G = (V, E) \) and a cost function \(C \) from \(E \) to non-negative real numbers. \(C(e) \) is the cost of edge \(e \).
- Output: A spanning tree \(T \) with minimum total cost. That is: \(T \) that minimizes

\[
C(T) = \sum_{e \in T} C(e)
\]
Observations About Spanning Trees

- For any spanning tree T, inserting an edge e_{new} not in T creates a cycle.
- But *removing* any edge e_{old} from the cycle gives back a spanning tree.
 - If e_{new} has a lower cost than e_{old}, we have progressed!
Find the MST
Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’ Algorithm
Completely different!
Prim’s Algorithm

Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. Pick the edge with the smallest weight.
Prim’s Algorithm

- Starting from empty T, choose a vertex at random and initialize $V = \{A\}$, $T = \{}$
Prim’s Algorithm

- Choose vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)

$V = \{A, C\}$

$T = \{ (A, C) \}$
Prim’s Algorithm

- Repeat until all vertices have been chosen

\[V = \{A, C, D\} \]

\[T = \{(A, C), (C, D)\} \]
Prim’s Algorithm

\[V = \{A, C, D, E\} \]

\[T = \{ (A, C), (C, D), (D, E) \} \]
Prim’s Algorithm

\[V = \{A, C, D, E, B\} \]

\[T = \{ (A, C), (C, D), (D, E), (E, B) \} \]
Prim’s Algorithm

\[V = \{ A, C, D, E, B, F \} \]

\[T = \{ (A, C), (C, D), (D, E), (E, B), (B, F) \} \]
Prim’s Algorithm

\[V = \{A, C, D, E, B, F, G\} \]

\[T = \{ (A, C), (C, D), (D, E), (E, B), (B, F), (E, G) \} \]
Prim’s Algorithm

Final Cost: $1 + 3 + 4 + 1 + 1 + 6 = 16$
Prim’s Algorithm Analysis

- How is it different from Djikstra's algorithm?

- If the step that removes unknown vertex with minimum distance is done with binary heap, the running time is: \(O(|E|\log |V|) \)
Kruskal’s MST Algorithm

- **Idea**: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.
Example of Kruskal 1
Example of Kruskal 2

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 2
Example of Kruskal 3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 4

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 5

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 6
Example of Kruskal 7
Example of Kruskal 7

\[\{7, 4\} \{2, 1\} \{7, 5\} \{5, 6\} \{5, 4\} \{1, 6\} \{2, 7\} \{2, 3\} \{3, 4\} \{1, 5\} \]

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 8,9

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}
0 1 1 2 2 3 3 3 3 4
Kruskal's Algorithm Implementation

Kruskals():
 sort edges in increasing order of length \((e_1, e_2, e_3, ..., e_m)\).

\[T := \{ \} \]

\[\text{for } i = 1 \text{ to } m \]
 \[\text{if } e_i \text{ does not add a cycle:} \]
 \[\text{add } e_i \text{ to } T. \]

\[\text{return } T. \]

- How can we determine that adding \(e_i \) to \(T \) won't add a cycle?