Dijkstra's Algorithm

- **Dijkstra's algorithm**: finds shortest (minimum weight) path between a particular pair of vertices in a weighted directed graph with *nonnegative* edge weights
 - Solves the "one vertex, shortest path" problem

- **Basic algorithm concept**:
 - For each vertex, keep track of the currently known best way to reach it (distance, previous vertex)
 - Iterate until best way is found
Example Application

- Dijkstra's algorithm can be used to find the shortest route between one city and any other
 - vertices represent cities
 - edge weights represent driving distances between pairs of cities connected by a direct road
Dijkstra pseudocode

Dijkstra(v1, v2):
 for each vertex v: // Initialization
 v's distance := infinity.
 v's previous := none.
 v1's distance := 0.
 List := {all vertices}.

 while List is not empty:
 v := remove List vertex with minimum distance.
 mark v as known.
 for each unknown neighbor n of v:
 dist := v's distance + edge (v, n)'s weight.

 if dist is smaller than n's distance:
 n's distance := dist.
 n's previous := v.

 reconstruct path from v2 back to v1,
 following previous pointers.
Example: Initialization

Distance(source) = 0

Pick vertex in List with minimum distance.

Distance (all vertices but source) = \(\infty\)
Example: Update neighbors' distance

Distance(B) = 2
Distance(D) = 1
Example: Remove vertex with min. distance

Pick vertex in List with minimum distance, i.e., D
Example: Update neighbors

Distance(C) = 1 + 2 = 3
Distance(E) = 1 + 2 = 3
Distance(F) = 1 + 8 = 9
Distance(G) = 1 + 4 = 5
Example: Continued...

Pick vertex in List with minimum distance (B) and update neighbors

Note: distance(D) not updated since D is already known and distance(E) not updated since it is larger than previously computed.
Example: Continued...

Pick vertex List with minimum distance (E) and update neighbors

No updating
Example: Continued...

Pick vertex List with minimum distance (C) and update neighbors

Distance(F) = 3 + 5 = 8
Example: Continued...

Distance(F) = min(8, 5+1) = 6

Pick vertex List with minimum distance (G) and update neighbors
Pick vertex not in S with lowest cost (F) and update neighbors
Correctness

- Dijkstra’s algorithm is a greedy algorithm
 - Makes choices that currently seem the best
 - In general, locally optimal does not always mean globally optimal (think hill-climbing), but in this case, it is.

- Correct because maintains following two properties:
 - For every known vertex, recorded distance is shortest distance to that vertex from source vertex
 - For every unknown vertex \(v \), its recorded distance is shortest path distance to \(v \) from source vertex, considering only currently known vertices and \(v \)
If the path to v is the next shortest path, the path to v' must be at least as long (if it were shorter, it would be picked over v). Therefore, any path through v' to v cannot be shorter!
The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary linked list or array

- Good if the graph is dense (lots of edges: \(|E| \sim O(|V|^2)|\))

- Initialization (setting to infinity, unknown) \(O(|V|)\)
- While loop \(O(|V|)\)
 - Find and remove min distance vertex \(O(|V|)\)
- Potentially \(O(|E|)\) distance updates
 - Update costs \(O(1)\)
- Reconstruct path \(O(|E|)\)

- Total time \(O(|V|^2| + |E|) = O(|V|^2)\)
Time Complexity: Priority Queue

- For sparse graphs (i.e. $|E| \sim O(|V|)$), Dijkstra's implemented more efficiently by priority queue

- Initialization $O(|V|)$ using $O(|V|)$ buildHeap
- While loop $O(|V|)$
 - Find and remove min distance vertex $O(\log |V|)$ using deleteMin
- Potentially $O(|E|)$ distance updates
 - Update costs $O(\log |V|)$ using decreaseKey
- Reconstruct path $O(|E|)$

- Total time $O(|V|\log |V| + |E|\log |V|) = O(|E|\log |V|)$
- $|V| = O(|E|)$ assuming a connected graph
Exercise

- Use Dijkstra's algorithm to determine the lowest cost path from vertex A to all of the other vertices in the graph. Keep track of previous vertices so that you can reconstruct the path later.