Lecture 13: Priority Queues (Heaps)
Motivating Examples

- **Bandwidth management:** A router is connected to a line with limited bandwidth. If there is insufficient bandwidth, the router maintains a queue for incoming data such that the most important data will get forwarded first as bandwidth becomes available.

- **Printing:** A shared server has a list of print jobs to print. It wants to print them in chronological order, but each print job also has a priority, and higher-priority jobs always print before lower-priority jobs.

- **Algorithms:** We are writing a ghost AI algorithm for Pac-Man. It needs to search for the best path to find Pac-Man; it will enqueue all possible paths with priorities (based on guesses about which one will succeed), and try them in order.
Priority Queue ADT

- **priority queue**: A collection of elements that provides fast access to the minimum (or maximum) element
 - a mix between a queue and a BST

- basic priority queue operations:
 - **insert**: Add an element to the priority queue (priority matters)
 - **remove (i.e. deleteMin)**: Removes/returns minimum element
Using PriorityQueue

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PriorityQueue<E>()</td>
<td>constructs a PriorityQueue that orders the elements according to their <code>compareTo</code> (element type must implement <code>Comparable</code>)</td>
</tr>
<tr>
<td>add(element)</td>
<td>inserts the element into the PriorityQueue</td>
</tr>
<tr>
<td>remove()</td>
<td>removes and returns the element at the head of the queue</td>
</tr>
<tr>
<td>peek()</td>
<td>returns, but does not remove, the element at the head of the queue</td>
</tr>
</tbody>
</table>

```
Queue<String> pq = new PriorityQueue<String>();
pq.add("Kona");
pq.add("Daisy");
```

- implements Queue interface
 - PriorityQueue in Java is a concrete class
Potential Implementations

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted list (Array)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsorted list (Linked-List)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted list (Array)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted list (Linked-List)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL Trees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Implementations</td>
<td>insert</td>
<td>deleteMin</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Unsorted list (Array)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted list (Linked-List)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted list (Array)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)^*$</td>
</tr>
<tr>
<td>Sorted list (Linked-List)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$ worst</td>
<td>$\Theta(n)$ worst</td>
</tr>
<tr>
<td>AVL Trees</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>

* Assume sorted array has lowest priority value item last
Heap properties

- **heap**: a tree with the following two properties:
 - 1. *completeness*
 - **complete tree**: every level is full except possibly the lowest level, which must be filled from left to right with no leaves to the right of a missing node (i.e., a node may not have any children until all of its possible siblings exist)

Heap shape:
Heap properties 2

- **2. heap ordering**
 - A tree has heap ordering if $P \leq X$ for every element X with parent P
 - In other words, in heaps, parents' element values are always smaller than those of their children
 - Implies that minimum element is always the root
 - Is every heap a BST? Are any heaps BSTs?
Which are min-heaps?
Which are max-heap?
Heap height and runtime

- height of a complete tree is always $\log n$, because it is always balanced
- because of this, if we implement a priority queue using a heap, we can provide the $O(\log n)$ runtime required for the add and remove operations

n-node complete tree of height h:

$2^h \leq n \leq 2^{h+1} - 1$

$h = \lceil \log n \rceil$
Implementation of a heap

- when implementing a complete binary tree, we actually can "cheat" and just use an array
 - index of root = 1 (leave 0 empty for simplicity)
 - for any node n at index i,
 - index of n.left = $2i$
 - index of n.right = $2i + 1$
 - parent index?
Implementing Priority Queue: Binary Heap

```java
public interface IntPriorityQueue {
    public void add(int value);
    public boolean isEmpty();
    public int peek();
    public int remove();
}

public class IntBinaryHeap implements IntPriorityQueue {
    private static final int DEFAULT_CAPACITY = 10;
    private int[] array;
    private int size;

    public IntBinaryHeap() {
        array = new int[DEFAULT_CAPACITY];
        size = 0;
    }

    ...  // Remaining code
}
```
Adding to a heap

- when an element is added to a heap, it should be initially placed as the rightmost leaf (to maintain the completeness property)
- heap ordering property becomes broken!
Adding to a heap, cont'd.

- to restore heap ordering property, the newly added element must "bubble up" until it reaches its proper place
 - bubble up (or "percolate up") by swapping with parent
 - how many bubble-ups could be necessary, at most?
Adding to a max-heap

- same operations, but must bubble up *larger* values to top

```
   16
  /   \
 16   18
 /     \
5      11
```

```
   16
  /   \
 18   11
 /     \
3      5
```

```
   18
  /   \
 16   11
 /     \
3      5
```
Heap practice problem

- Draw the state of the min-heap tree after adding the following elements to it:

6, 50, 11, 25, 42, 20, 104, 76, 19, 55, 88, 2