Implementing Set with BST

- Each Set entry adds a node to tree
 - Node contains String element, references to left/right subtree

- Tree organized for binary search
 - Quickly search or place to insert/remove element
Implementing Set with BST (cont.)

```java
public interface StringSet {
    public boolean add(String value);

    public boolean contains(String value);

    public void print();

    public boolean remove(String value);

    public int size();
}
```
StringTreeSet class

// A StringTreeSet represents a Set of Strings.
public class StringTreeSet {
 private StringTreeNode root; // null for an empty set

 methods
}

- Client code talks to the StringTreeSet, not to the node objects inside it

- Methods of the StringTreeSet create and manipulate the nodes, their data and links between them
Set implementation: contains

```java
public boolean contains(String value) {
    return contains(root, value);
}

private boolean contains(StringTreeNode node, String value) {
    if (node == null) {
        return false;               // not in set
    } else if (node.data.compareTo(value) == 0) {
        return true;               // found!
    } else if (node.data.compareTo(value) > 0) {
        return contains(node.left, value);    // search left
    } else {
        return contains(node.right, value);   // search right
    }
}
```
Set implementation: insert

- **Starts like** contains
 - Trace out path where node should be

- **Add node as new leaf**
 - Don't change any other nodes or references
 - Correct place to maintain binary search tree property
public boolean add(String value) {
 int oldSize = size();
 this.root = add(root, value);
 return oldSize != size();
}

private StringTreeNode add(StringTreeNode node, String value) {
 if (node == null) {
 node = new StringTreeNode(value);
 numElements++;
 } else if (node.data.compareTo(value) == 0) {
 return node;
 } else if (node.data.compareTo(value) > 0) {
 node.left = add(node.left, value);
 } else {
 node.right = add(node.right, value);
 }
 return node;
}
Set implementation: remove

Possible states for the node to be removed:

- a leaf: replace with null
- a node with a left child only: replace with left child
- a node with a right child only: replace with right child
- a node with both children: replace with min value from right

```
set.remove("L");
```

```
set.remove("M");
```
Set implementation: remove

```java
public boolean remove(String value) {
    int oldSize = numElements;
    root = remove(root, value);
    return oldSize > numElements;
}

protected StreeNode remove(StreeNode node, String value) {
    if (node == null) { return node;
    } else if (node.data.compareTo(value) < 0) { node.right = remove(node.right, value);
    } else if (node.data.compareTo(value) > 0) { node.left = remove(node.left, value);
    } else {
        if (node.right != null && node.left != null) {
            node.data = getMinValue(node.right);
            node.right = remove(node.right, node.data);
        } else if (node.right != null) {
            node = node.right;
            numElements--;
        } else {
            node = node.left;
            numElements--;
        }
    }
    return node;
}
```
Evaluate Set as BST

- **Space used**
 - Overhead of two references per entry
 - BST adds nodes as needed; no excess capacity

- **Runtime**
 - `add`, `contains` take time proportional to tree height
 - Height expected to be $O(\log N)$
 - Why? Let’s talk about tree height first…
Tree height calculation

- Height is max number of edges from root to leaf
 - height(null) = -1
 - height(1) = 0
 - height(A)?
 - Hint: it's recursive!
A Balanced Tree

- Values: 2 8 14 15 18 20 21
 - Order added: 15, 8, 2, 20, 21, 14, 18
- Different tree structures possible
 - Depends on order inserted
- 7 nodes, expected height $\log 7 \approx 3$
- Perfectly balanced
Mostly Balanced Tree

- Same Values: 2 8 14 15 18 20 21
- Order added: 20, 8, 21, 18, 14, 15, 2
- Mostly balanced, height 4
Degenerate Tree

- Same Values: 2 8 14 15 18 20 21
 - Order added: 2, 8, 14, 15, 18, 20, 21
- Totally unbalanced, height 6
Binary Trees: Some Numbers

- Recall: height of a tree = length of longest path from the root to a leaf.
- For binary tree of height h:
 - max # of leaves: 2^h
 - max # of nodes: $2^{(h + 1)} - 1$
 - min # of leaves: 1
 - min # of nodes: $h + 1$
Implementing Set ADT (Revisited)

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Remove</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$\Theta(\log(n) + n)$</td>
<td>$\Theta(\log(n) + n)$</td>
<td>$\Theta(\log(n))$</td>
</tr>
<tr>
<td>Linked list</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>BST (if balanced)</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
AVL Tree Motivation

- Observation: the shallower the BST the better
- For a BST with n nodes
 - Average case height is $\Theta(\log n)$
 - Worst case height is $\Theta(n)$
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario: height is $\Theta(n)$

- Strategy: Don't let the tree get lopsided
 - Constantly monitor balance for each subtree
 - Rebalance subtree before going too far astray
Balanced Tree

- **Balanced Tree**: a tree in which heights of subtrees are approximately equal
Tree Balance and Height

- (a) The balanced tree has a height of: ___________
- (b) The unbalanced tree has a height of: ___________