Why algorithm analysis?

- So much data!!
 - Human genome: 3.2×10^9 base pairs
 - If there are 7×10^9 on the planet, how many base pairs of human DNA?
 - Earth surface area: 1.49×10^8 km2
 - How many photos if taking a photo of each m2?
 - For every day of the year (3.65×10^2)?

- But aren't computers getting faster and faster?
Why algorithm analysis?

- As problem sizes get bigger, analysis is becoming *more* important.

- The difference between good and bad algorithms is getting bigger.

- Being able to analyze algorithms will help us identify good ones without having to program them and test them first.
Measuring Performance: Empirical Approach

- Implement it, run it, time it (averaging trials)
 - Pros?
 - No math!
 - Cons?
 - Need to implement code
 - When comparing two algorithms, all other factors need to be held constant (e.g., same computer, OS, processor, load)
 - A really bad algorithm could take a really long time to execute
Measuring Performance: Analytical Approach

- Use a simple model for basic operation costs

- Computational Model
 - has all the basic operations: +, -, *, /, =, comparisons
 - infinite memory
 - all basic operations take exactly one time unit to execute
Measuring Performance: Analytical Approach

- Analyze steps of algorithm, estimating amount of work each step takes
 - Pros?
 - Independent of system-specific configuration
 - Good for estimating
 - Don't need to implement code
 - Cons?
 - Won't give you info exact runtimes optimizations made by the computer architecture
 - Only gives useful information for large problem sizes
 - In real life, not all operations take exactly the same time (multiplication takes longer than addition) and have memory limitations
Analyzing Performance

- General “rules” to help measure how long it takes to do things:

 Basic operations: Constant time
 Consecutive statements: Sum of number of statements
 Conditionals: Test, plus larger branch cost
 Loops: Sum of iterations
 Function calls: Cost of function body
 Recursive functions: Solve “recurrence relation”
Efficiency examples

statement1;
statement2;
statement3;

\[
\begin{array}{l}
\text{for (int } i = 1; i <= N; i++) \{ \\
\quad \text{statement4;} \\
\} \\
\end{array}
\]

\[
\begin{array}{l}
\text{for (int } i = 1; i <= N; i++) \{ \\
\quad \text{statement5; } \\
\quad \text{statement6; } \\
\quad \text{statement7;} \\
\} \\
\end{array}
\]

\[
\begin{array}{l}
\begin{array}{l}
\{ 3 \\
3N \\
3N \}
\end{array}
\end{array}
\]

\[
\begin{array}{l}
\begin{array}{l}
\{ 3 \}
\end{array}
\end{array}
\]

\[
\begin{array}{l}
\begin{array}{l}
\{ N \}
\end{array}
\end{array}
\]

\[
\begin{array}{l}
\{ 4N + 3 \}
\end{array}
\]
Efficiency examples 2

for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

- How many statements will execute if $N = 10$? If $N = 1000$?
Relative rates of growth

- Most algorithms' runtime can be expressed as a function of the input size N

- **rate of growth**: measure of how quickly the graph of a function rises

- **Goal**: distinguish between fast- and slow-growing functions
 - We only care about very large input sizes (for small sizes, almost any algorithm is fast enough)
 - This helps us discover which algorithms will run more quickly or slowly, for large input sizes

- Most of the time interested in worst case performance; sometimes look at best or average performance
Growth rate example

- Consider these graphs of functions. Perhaps each one represents an algorithm:
 - $n^3 + 2n^2$
 - $100n^2 + 1000$

- Which grows faster?
Growth rate example

- How about now?