Trees so far

- BST
- AVL

M-ary Search Tree

- Maximum branching factor of \(M \)
- Complete tree has height =
disk accesses for \textit{find}:

Runtime of \textit{find}:

Solution: B-Trees

- specialized \(M \)-ary search trees
- Each node has (up to) \(M-1 \) keys:
 - subtree between two keys \(x \) and \(y \) contains leaves with values \(v \) such that \(x \leq v \leq y \)
- Pick branching factor \(M \) such that each node takes one full \{page, block\} of memory
B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
 • All brought to memory/cache in one access!

2. Internal nodes contain only keys;
 Only leaf nodes contain keys and actual data
 • The tree structure can be loaded into memory irrespective of data object size
 • Data actually resides in disk

B-Trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

• Depth of AVL Tree
• Depth of B+ Tree with $M = 128$, $L = 64$
Splitting the Root

- Insert(1)
- Too many keys in a leaf!
- And create a new root
- So, split the leaf.

Overflowing leaves

- Insert(59)
- Insert(26)
- Too many keys in a leaf!
- So, split the leaf.
- And add a new child.

Insertion Algorithm

1. Insert the key in its leaf
2. If the leaf ends up with L+1 items, overflow!
 - Split the leaf into two nodes:
 - original with \(\lceil (L+1)/2 \rceil \)
 - new one with \(\lfloor (L+1)/2 \rfloor \)
 - Add the new child to the parent
 - If the parent ends up with \(M+1\) items, overflow!
3. If an internal node ends up with \(M+1\) items, overflow!
 - Split the node into two nodes:
 - original with \(\lceil (M+1)/2 \rceil \)
 - new one with \(\lfloor (M+1)/2 \rfloor \)
 - Add the new child to the parent
 - If the parent ends up with \(M+1\) items, overflow!
4. Split an overflowed root in two and hang the new nodes under a new root

Propagating Splits

- Insert(5)
- Add new child
- Split the leaf, but no space in parent!
- Create a new root
- So, split the node.

After More Routine Inserts

- Insert(89)
- Insert(79)

Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary

M = 3 L = 2
Deletion and Adoption

A leaf has too few keys!

Delete(5)

So, borrow from a sibling

Delete(3)

And no sibling with surplus!

But now an internal node has too few subtrees!

Does Adoption Always Work?

• What if the sibling doesn’t have enough for you to borrow from?

 e.g. you have \(\lceil L/2 \rceil -1 \) and sibling has \(\lceil L/2 \rceil \)?

Deletion and Merging

A leaf has too few keys!

Delete(3)

And no sibling with surplus!

But now an internal node has too few subtrees!

Deletion with Propagation (More Adoption)

A leaf has too few keys!

Delete(26)

And no sibling with surplus!

Pinning out the Root

A leaf has too few keys!

But now the root has just one subtree!

A node has too few subtrees and no neighbor with surplus!
Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer than \(\lceil L/2 \rceil \) items, **underflow**!
 - **Adopt** data from a sibling; update the parent
 - If adopting won’t work, delete node and **merge** with neighbor
 - If the parent ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow**!

3. If an **internal** node ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow**!
 - **Adopt** from a neighbor; update the parent
 - If adoption won’t work, **merge** with neighbor
 - If the parent ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow**!

4. If the **root** ends up with only one child, make the child the new root of the tree

 This reduces the height of the tree!

Thinking about B-Trees

- B-Tree **insertion** can cause (expensive) splitting and propagation
- B-Tree **deletion** can cause (cheap) adoption or (expensive) deletion, merging and propagation
- Propagation is rare if \(M \) and \(L \) are large (Why?)
- If \(M = L = 128 \), then a B-Tree of height 4 will store at least 30,000,000 items

Tree Names You Might Encounter

FYI:
- B-Trees with \(M = 3, L = x \) are called **2-3 trees**
 - Nodes can have 2 or 3 pointers
- B-Trees with \(M = 4, L = x \) are called **2-3-4 trees**
 - Nodes can have 2, 3, or 4 pointers

Determining M and L for a B-Tree

1 Page on disk = 1 KByte
Key = 8 bytes, Pointer = 4 bytes
Data = 256 bytes per record (includes key)