Beyond Comparison Sorting

CSE 373
Data Structures & Algorithms
Ruth Anderson

Today’s Outline

• Admin:
 – HW #5 – Graphs, due Thurs Nov 29 at 11pm
 – HW #6 – last homework, on sorting, individual project, no Java programming, coming soon, due Thurs Dec 6.

• Sorting
 – Comparison Sorting
 – Beyond Comparison Sorting

The Big Picture

Simple algorithms: $O(n^2)$
Fancier algorithms: $O(n \log n)$
Comparison lower bound: $\Omega(n \log n)$
Specialized algorithms: $O(n)$
Handling huge data sets

Sorting:

- Insertion sort
- Selection sort
- Heap sort
- Merge sort
- Quick sort (avg)
- Shell sort
- Radix sort
- Bucket sort
- Radix sort
- External sorting

How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(\sqrt{n \log n})$????
 - Instead: we actually KNOW that this is impossible!!
 - (See end of slide deck for proof)
- In particular, it is impossible assuming our comparison model.
 - The only operation an algorithm can perform on data items is a 2-element comparison

Comparison Sorting

So far we have only talked about comparison sorting:

Assume we have n comparable elements in an array and we want to rearrange them to be in increasing order:

Input:
- An array A of data records
- A key value in each data record
- A comparison function (consistent and total)
- Given keys a & b, what is their relative ordering? $<, =, >$?
- Ex: keys that implement Comparable or have a Comparator that can handle them

Effect:
- Reorganize the elements of A such that for any i and j,
 $i < j$ then $A[i] \leq A[j]$

An algorithm doing this is a comparison sort

The Big Picture

Simple algorithms: $O(n^2)$
Fancier algorithms: $O(n \log n)$
Comparison lower bound: $\Omega(n \log n)$
Specialized algorithms: $O(n)$
Handling huge data sets

Insertion sort
Selection sort
Shell sort
Heap sort
Merge sort
Quick sort (avg)
Bucket sort
Radix sort
External sorting

How???
- Change the model – assume more than ‘compare(a,b)’
Bucket Sort (a.k.a. BinSort)

If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K and put each element in its proper bucket (a.k.a. bin)
- If data is only integers, don’t even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

Example:
K = 5
Input: (5,1,3,4,3,1,1,5,4,5)
Output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?

Analyzing bucket sort

Overall: \(O(nK)\)
- Linear in \(n\) but also linear in \(K\)
- \(\Omega(n \log n)\) lower bound does not apply because this is not a comparison sort
- Good when range, \(K\), is smaller (or not much larger) than number of elements, \(n\)
 - We don’t spend time doing lots of comparisons of duplicates!
- Bad when \(K\) is much larger than \(n\)
 - Wasted space; wasted time during final linear \(O(K)\) pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

Most real lists aren’t just #’s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in \(O(1)\) (say, keep a pointer to last element)

Example: Movie ratings; scale 1-5; 1=bad, 5=excellent
Input:
- Rocky V
- Harry Potter
- Casablanca
- Star Wars
- Rocky V

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- This result is ‘stable’: Casablanca still before Star Wars

Radix sort

Radix = “the base of a number system”
- Examples will use 10 because we are used to that
- In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
 - After \(k\) passes, the last \(k\) digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

<table>
<thead>
<tr>
<th>Input</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>537</td>
<td>478</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First pass:
1. bucket sort by ones digit
2. Iterate thru and collect into a list

List is sorted by first digit.

Order now: 721

Aside: Origins go back to the 1890 U.S. census
Example

Radix = 10

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>143</td>
<td>537</td>
<td>67</td>
<td>478</td>
<td>38</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was: 721

Second pass:

stable bucket sort by tens digit

If we chop off the 100's place, these #s are sorted

Order now: 3

Example

Radix = 10

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>9</td>
<td>721</td>
<td>3</td>
<td>143</td>
<td>537</td>
<td>67</td>
<td>478</td>
<td>38</td>
<td>9</td>
</tr>
</tbody>
</table>

Order was: 721

Third pass:

stable bucket sort by 100s digit

Only 3 digits: We’re done!

Order now: 3

Analysis of Radix Sort

Performance depends on:

• Input size: \(n \)
• Number of buckets = Radix: \(B \)
 – e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
• Number of passes = "Digits": \(P \)
 – e.g. Ages of people: 3; Phone #: 10; Person’s name: ?
• Work per pass is 1 bucket sort: \(O(B \times n) \)
 – Each pass is a Bucket Sort
• Total work is \(O(P(B \times n)) \)
 – We do \(P \) passes, each of which is a Bucket Sort

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

– Example: Strings of English letters up to length 15
 • Approximate run-time: \(15 \times (52 + n) \)
 • This is less than \(n \log n \) only if \(n > 33,000 \)
 • Of course, cross-over point depends on constant factors of the implementations plus \(P \) and \(B \)
 – And radix sort can have poor locality properties
 – Not really practical for many classes of keys
 – Strings: Lots of buckets
Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Mergesort is the basis of massive sorting
- In-memory sorting of reasonable blocks can be combined with larger mergesorts
- Mergesort can leverage multiple disks

External Sorting

- For sorting massive data
- Need sorting algorithms that minimize disk/tape access time
- External sorting – Basic Idea:
 - Load chunk of data into Memory, sort, store this “run” on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
- Text gives some examples

Features of Sorting Algorithms

In-place
- Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)

Stable
- Items in input with the same value end up in the same order as when they began.

Examples:
- Merge Sort - not in place, stable
- Quick Sort - in place, not stable

Last word on sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for “below a cut-off” to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - heap sort, in-place but not stable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n \log n)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small maximum key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
- Instead: prove that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2 element comparison
A Different View of Sorting

- Assume we have \(n \) elements to sort
 - And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, \(n=3 \),

\[
\text{The leaves contain all the possible orderings of } a, b, c
\]

Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to "find" the right answer among the \(n! \) possible answers
 - Starts "knowing nothing", "anything is possible"
 - Gains information with each comparison, eliminating some possibilities
 - Intuition: At best, each comparison can eliminate half of the remaining possibilities
 - In the end narrows down to a single possibility

Representing the Sort Problem

- Can represent this sorting process as a decision tree:
 - Nodes are sets of "remaining possibilities"
 - At root, anything is possible; no option eliminated
 - Edges represent comparisons made, and the node resulting from a comparison contains only consistent possibilities
 - Ex: Say we need to know whether \(a \prec b \) or \(b \prec a \); our root for \(n=2 \)
 - A comparison between \(a \) & \(b \) will lead to a node that contains only one possibility (either \(a \prec b \) or \(b \prec a \))

 Note: This tree is not a data structure; it's what our proof uses to represent "the most any algorithm could know"

Decision tree for \(n=3 \)

\[
\text{The leaves contain all the possible orderings of } a, b, c
\]

What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is \(a \prec b \)? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn’t ask redundant questions
 - Because any data is possible, any algorithm needs to ask enough questions to produce all \(n! \) answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have \(n! \) leaves
 - Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree
Example: Sorting a, b, c

possible orders

actual order

Where are we

Proven: No comparison sort can have worst-case running time better than the height of a binary tree with \(n! \) leaves

- Turns out average-case is same asymptotically
- Fine, how tall is a binary tree with \(n! \) leaves?

Now: Show that a binary tree with \(n! \) leaves has height \(\Omega(n \log n) \)

- That is, \(n \log n \) is the lower bound, the height must be at least this, could be more. (In other words your comparison sorting algorithm could take longer than this, but it won’t be faster)
- Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is \(\Omega(n \log n) \)

- This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time!

Lower bound on Height

- A binary tree of height \(h \) has at most how many leaves?
 \(L \leq \underline{2^h} \)

- A binary tree with \(L \) leaves has height at least:
 \(h \geq \underline{\log_2 L} \)

- The decision tree has how many leaves: \(N! \)
- So the decision tree has height:
 \(h \geq \underline{\log_2 N!} \)

Lower bound on height

- The height of a binary tree with \(L \) leaves is at least \(\log_2 L \)
- So the height of our decision tree, \(h \):
 \[h \geq \log_2 (n!) \]
 \[= \log_2 (n(n-1)(n-2)...(2)(1)) \]
 \[\geq \log_2 n + \log_2 (n-1) + ... + \log_2 1 \]
 \[\geq \log_2 n + \log_2 (n-1) + ... + \log_2 \left(\frac{n}{2}\right) \]
 \[\geq \left(\frac{n}{2}\right) \log_2 (\frac{n}{2}) \]
 \[\geq (1/2)n \log_2 n - (1/2)n \]
 \[\sim \Theta(n \log n) \]