Beyond Comparison Sorting

CSE 373
Data Structures & Algorithms
Ruth Anderson

Today's Outline

• Admin:
 – HW #5 – Graphs, due Thurs Nov 29 at 11pm
 – HW #6 – last homework, on sorting, individual project, no Java programming, coming soon, due Thurs Dec 6.

• Sorting
 – Comparison Sorting
 – Beyond Comparison Sorting

The Big Picture

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)
- Radix sort

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- External sorting

Handling huge data sets

Comparison Sorting

So far we have only talked about comparison sorting:
Assume we have n comparable elements in an array and we want to rearrange them to be in increasing order:

Input:
- An array A of data records
- A key value in each data record
- A comparison function (consistent and total)
 - Given keys a & b, what is their relative ordering? $<, =, >$?
 - Ex: keys that implement Comparable or have a Comparator that can handle them

Effect:
- Reorganize the elements of A such that for any i and j,
 - if $i < j$ then $A[i] \leq A[j]$

An algorithm doing this is a comparison sort
How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$??
 - Instead: we actually KNOW that this is impossible!!
 - (See end of slide deck for proof)
- In particular, it is impossible assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

The Big Picture

<table>
<thead>
<tr>
<th>Simple algorithms: $O(n^2)$</th>
<th>Fancier algorithms: $O(n \log n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion sort</td>
<td>Heap sort</td>
</tr>
<tr>
<td>Selection sort</td>
<td>Merge sort</td>
</tr>
<tr>
<td>Shell sort</td>
<td>Quick sort (avg)</td>
</tr>
<tr>
<td>...</td>
<td>Bucket sort</td>
</tr>
<tr>
<td>...</td>
<td>Radix sort</td>
</tr>
<tr>
<td>...</td>
<td>Handling huge data sets</td>
</tr>
</tbody>
</table>

Comparison lower bound: $Ω(n \log n)$

Specialized algorithms: $O(n)$

Handling huge data sets

How??
- Change the model – assume more than 'compare(a,b)'

Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, don’t even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

Example:
- $K=5$
- Input: $(5,1,3,4,3,2,1,1,5,4,5)$
- Output:

<table>
<thead>
<tr>
<th>count array</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the running time?

Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, don’t even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

Example:
- $K=5$
- Input: $(5,1,3,4,3,2,1,1,5,4,5)$
- Output: $(1,1,1,2,3,3,4,4,5,5,5)$

<table>
<thead>
<tr>
<th>count array</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyzing bucket sort

- Overall: $O(nK)$
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when range, K, is smaller (or not much larger) than number of elements, n
 - We don’t spend time doing lots of comparisons of duplicates!
- Bad when K is much larger than n
 - Wasted space; wasted time during final linear $O(K)$ pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren’t just #’s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in $O(1)$ (say, keep a pointer to last element)

Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
 - After k passes, the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

Input: 478
537
9
721
3
38
143
67

First pass:
1. bucket sort by ones digit
 - 478
 - 537
2. Iterate thru and collect into a list
 - 3
 - 9
 - 143
 - 67
List is sorted by first digit.

Order now: 721
Analysis of Radix Sort

Performance depends on:

- **Input size:** \(n \)
- **Number of buckets = Radix:** \(B \)
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- **Number of passes = "Digits":** \(P \)
 - e.g. Ages of people: 3; Phone #: 10; Person’s name: ?
- Work per pass is 1 bucket sort:
 - Each pass is a Bucket Sort
- Total work is
 - We do \(P \) passes, each of which is a Bucket Sort

Student Activity

RadixSort

- **Input:** 126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

BucketSort on next-higher digit:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

BucketSort on msd:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Analysis of Radix Sort

Performance depends on:
• Input size: \(n \)
• Number of buckets = Radix: \(B \)
 – Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
• Number of passes = "Digits": \(P \)
 – Ages of people: 3; Phone #: 10; Person’s name: ?
• Work per pass is 1 bucket sort: \(O(B+n) \)
 – Each pass is a Bucket Sort
• Total work is \(O(P(B+n)) \)
 – We do \(P \) passes, each of which is a Bucket Sort

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not
• Example: Strings of English letters up to length 15
 – Approximate run-time: \(15(52 + n) \)
 – This is less than \(n \log n \) only if \(n > 33,000 \)
 • Of course, cross-over point depends on constant factors of the implementations plus \(P \) and \(B \)
 • And radix sort can have poor locality properties
 • Not really practical for many classes of keys
 • Strings: Lots of buckets

Sorting massive data

• Need sorting algorithms that minimize disk/tape access time:
 – Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 – Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
• Mergesort is the basis of massive sorting
• In-memory sorting of reasonable blocks can be combined with larger mergesorts
• Mergesort can leverage multiple disks

External Sorting

• For sorting massive data
• Need sorting algorithms that minimize disk/tape access time
• External sorting – Basic Idea:
 – Load chunk of data into Memory, sort, store this "run" on disk/tape
 – Use the Merge routine from Mergesort to merge runs
 – Repeat until you have only one run (one sorted chunk)
 – Text gives some examples
Features of Sorting Algorithms

In-place
- Sorted items occupy the same space as the original items.
 (No copying required, only $O(1)$ extra space if any.)

Stable
- Items in input with the same value end up in the same order as when they began.

Examples:
- Merge Sort - not in place, stable
- Quick Sort - in place, not stable

Last word on sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - heap sort, in-place but not stable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small maximum key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

Extra Slides: Proof of Comparison Sorting Lower Bound

How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
 - Instead: prove that this is impossible
 - Assuming our comparison model. The only operation an algorithm can perform on data items is a 2-element comparison
A Different View of Sorting

• Assume we have \(n \) elements to sort
 – And for simplicity, none are equal (no duplicates)

• How many permutations (possible orderings) of the elements?

• Example, \(n=3 \),
 - six possibilities
 \[
 \]

• In general, \(n \) choices for least element, then \(n-1 \) for next, then \(n-2 \) for next,
 – \(n(n-1)(n-2)\ldots(2)(1) = n! \) possible orderings

Describing every comparison sort

• A different way of thinking of sorting is that the sorting algorithm
 has to “find” the right answer among the \(n! \) possible answers
 – Starts “knowing nothing”, “anything is possible”
 – Gains information with each comparison, eliminating some possibilities
 • Intuition: At best, each comparison can eliminate half of the remaining possibilities
 – In the end narrows down to a single possibility

Representing the Sort Problem

• Can represent this sorting process as a decision tree:
 – Nodes are sets of “remaining possibilities”
 – At root, anything is possible; no option eliminated
 – Edges represent comparisons made, and the node resulting from a comparison contains only consistent possibilities
 • Ex: Say we need to know whether \(a<b \) or \(b<a \); our root for \(n=2 \)
 • A comparison between \(a \& b \) will lead to a node that contains only one possibility (either \(a<b \) or \(b<a \))

Note: This tree is not a data structure, it’s what our proof uses to represent “the most any algorithm could know”
Decision tree for n=3

What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is a<b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn’t ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree

Example: Sorting a, b, c

Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with n! leaves
 - Turns out average-case is same asymptotically
 - Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height Ω(n log n)
 - That is, n log n is the lower bound, the height must be at least this, could be more. (in other words your comparison sorting algorithm could take longer than this, but it won’t be faster)
 - Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is Ω(n log n)
 - This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time!
Lower bound on Height

• A binary tree of height \(h \) has at most how many leaves?
 \(L \leq \ldots \)

• A binary tree with \(L \) leaves has height at least:
 \(h \geq \ldots \)

• The decision tree has how many leaves:
 \(\ldots \)

• So the decision tree has height:
 \(h \geq \ldots \)

Lower bound on Height

• A binary tree of height \(h \) has at most how many leaves?
 \(L \leq 2^h \)

• A binary tree with \(L \) leaves has height at least:
 \(h \geq \log_2 L \)

• The decision tree has how many leaves: \(N! \)

• So the decision tree has height:
 \(h \geq \ldots \)

Lower bound on height

• The height of a binary tree with \(L \) leaves is at least \(\log_2 L \)

• So the height of our decision tree, \(h \):
 \[h \geq \log_2 (n!) \]

 \[= \log_2 (n(n-1)(n-2)\ldots(2)(1)) \]

 \[\geq \log_2 n + \log_2 (n-1) + \ldots + \log_2 2 \]

 \[\geq \log_2 (n/2) + \log_2 (n/2) + \ldots + \log_2 (n/2) \]

 \[\geq \log_2 (n/2) \]

 \[= \frac{1}{2} n \log_2 n \]

 \[= \Omega (n \log n) \]