Beyond Comparison Sorting

CSE 373
Data Structures & Algorithms
Ruth Anderson

Today’s Outline

• Admin:
 – HW #5 – Graphs, due Thurs Nov 29 at 11pm
 – HW #6 – last homework, on sorting, individual project, no Java programming, coming soon, due Thurs Dec 6.

• Sorting
 – Comparison Sorting
 – Beyond Comparison Sorting

The Big Picture

Simple algorithms: \(O(n^2)\)
Fancier algorithms: \(O(n \log n)\)
Comparison lower bound: \(\Omega(n \log n)\)
Specialized algorithms: \(O(1)\)
Handling huge data sets

Insertion sort
Selection sort
Shell sort
...
Heap sort
Merge sort
Quick sort (avg)
...
Bucket sort
Radix sort
External sorting
Comparison Sorting
So far we have only talked about comparison sorting:
Assume we have \(n\) comparable elements in an array and we want to rearrange them to be in increasing order:

Input:
- An array \(A\) of data records
- A key value in each data record
- A comparison function (consistent and total)
 - Given keys \(a\) & \(b\), what is their relative ordering? <, =, >?
 - Ex: keys that implement Comparable or have a Comparator that can handle them

Effect:
- Reorganize the elements of \(A\) such that for any \(i\) and \(j\), if \(i < j\) then \(A[i] \leq A[j]\)

An algorithm doing this is a comparison sort

How fast can we sort?
- Heapsort & mergesort have \(O(n \log n)\) worst-case running time
- Quicksort has \(O(n \log n)\) average-case running times
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as \(O(n)\) or \(O(n \log \log n)\) ???
 - Instead: we actually KNOW that this is impossible!!
 - (See end of slide deck for proof)

- In particular, it is impossible assuming our comparison model:
The only operation an algorithm can perform on data items is a 2-element comparison

The Big Picture

Simple algorithms: \(O(n^2)\)
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: \(O(n \log n)\)
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: \(\Omega(n \log n)\)

Specialized algorithms: \(O(n)\)
- Bucket sort
- Radix sort
- External sorting

Handling huge data sets

How??
- Change the model – assume more than \(\text{compare}(a,b)\)
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K and put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, don’t even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

Example:

```
K=5
Input: (5,1,3,4,3,2,1,1,5,4,5)
```

Output:

```
1,1,1,2,3,3,4,4,5,5,5
```
Bucket Sort with Data

- Most real lists aren't just #'s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in O(1) (say, keep a pointer to last element)

<table>
<thead>
<tr>
<th>Count array</th>
<th>Rocky V</th>
<th>Harry Potter</th>
<th>Casablanca</th>
<th>Star Wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example: Movie ratings; scale 1-5; 1=bad, 5=excellent
- Input:
 - 5: Casablanca
 - 3: Harry Potter movies
 - 5: Star Wars Original Trilogy
 - 1: Rocky V

- Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- This result is 'stable'; Casablanca still before Star Wars

Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
 - After k passes, the last k digits are sorted

- Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

<table>
<thead>
<tr>
<th>Radix</th>
<th>Count</th>
<th>Order</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>721</td>
<td>478</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>537</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>721</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
<td>143</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>143</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>6</td>
<td>67</td>
</tr>
</tbody>
</table>

- First pass:
 1. bucket sort by ones digit
 2. Iterate thru and collect into a list
- List is sorted by first digit.
Example

Radix = 10

0 1 2 3 4 5 6 7 8 9
721 3 143 537 67 478 38 9

Order was: 721 3 143 537 67 478 38 9
Order now: 3 9 721 537 38 143 67 478

Second pass: stable bucket sort by tens digit
If we chop off the 100's place, these #s are sorted

Order now: 721 3 9 721 537 38 143 67 478

Example

Radix = 10

0 1 2 3 4 5 6 7 8 9
3 9 721 537 38 143 67 478 9

Order was: 721 3 9 721 537 38 143 67 478
Order now: 3 9 721 537 38 143 67 478

Third pass: stable bucket sort by 100s digit
Only 3 digits: We're done!

Order now: 721 3 9 721 537 38 143 67 478

Student Activity

RadixSort

BucketSort on lsd:

Input: 126, 328, 636, 341, 416, 131, 328

BucketSort on next-higher digit:

BucketSort on msd:

RadixSort
Analysis of Radix Sort

Performance depends on:
- Input size: n
- Number of buckets = Radix: B
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
 - e.g. Ages of people: 3; Phone #: 10; Person's name: ?
- Work per pass is 1 bucket sort: $O(B + n)$
 - Each pass is a Bucket Sort
- Total work is $O(P(B + n))$
 - We do P passes, each of which is a Bucket Sort

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not
- Example: Strings of English letters up to length 15
 - Approximate run-time: $15(52 + n)$
 - This is less than $n \log n$ only if $n > 33,000$
 - Of course, cross-over point depends on constant factors of the implementations plus P and B
 - And radix sort can have poor locality properties
 - Not really practical for many classes of keys
 - Strings: Lots of buckets
Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- MergeSort is the basis of massive sorting
- In-memory sorting of reasonable blocks can be combined with larger mergesorts
- Mergesort can leverage multiple disks

External Sorting

- For sorting massive data
- Need sorting algorithms that minimize disk/tape access time
- External sorting – Basic Idea:
 - Load chunk of data into Memory, sort, store this ‘run’ on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples

Features of Sorting Algorithms

In-place
 - Sorted items occupy the same space as the original items.
 - (No copying required, only O(1) extra space if any.)

Stable
 - Items in input with the same value end up in the same order as when they began.

Examples:
 - Merge Sort - not in place, stable
 - Quick Sort - in place, not stable
Last word on sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for “below a cut-off” to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - heap sort, in-place but not stable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small maximum key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

Extra Slides: Proof of Comparison Sorting Lower Bound

How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
 - Instead: prove that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2 element comparison
A Different View of Sorting

- Assume we have \(n \) elements to sort
 - And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, \(n=3 \):

\[
\text{a[0]<a[1]<a[2]} \quad \text{a[0]<a[2]<a[1]} \quad \text{a[1]<a[0]<a[2]} \\
\text{a[1]<a[2]<a[0]} \quad \text{a[2]<a[0]<a[1]} \quad \text{a[2]<a[1]<a[0]}
\]

- In general, \(n \) choices for least element, then \(n-1 \) for next, then \(n-2 \) for next, …
- \(n(n-1)(n-2)\ldots(2)(1) = n! \) possible orderings

Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to "find" the right answer among the \(n! \) possible answers
 - Starts "knowing nothing", "anything is possible"
 - Gains information with each comparison, eliminating some possibilities
 - Intuition: At best, each comparison can eliminate half of the remaining possibilities
 - In the end narrows down to a single possibility
Representing the Sort Problem

- Can represent this sorting process as a decision tree:
 - **Nodes** are sets of remaining possibilities
 - At root, anything is possible; no option eliminated
 - **Edges** represent comparisons made, and the node resulting from a comparison contains only consistent possibilities
 - Ex: Say we need to know whether a< b or b< a; our root for n=2
 - A comparison between a & b will lead to a node that contains only one possibility (either a< b or b< a)

Note: This tree is not a data structure, it’s what our proof uses to represent ‘the most any algorithm could know’

Decision tree for n=3

The leaves contain all the possible orderings of a, b, c

What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is a< b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn’t ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree
Example: Sorting a, b, c

possible orders

a < b < c, b < c < a, a < c < b, c < a < b, b < a < c, c < b < a

actual order

a < b < c

Where are we

Proven: No comparison sort can have worst-case running time better than the height of a binary tree with n! leaves
- Turns out average-case is same asymptotically
- Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height \(\Omega(n \log n) \)
- That is, \(n \log n \) is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won't be faster)
- Factorial function grows very quickly

Then we'll conclude that: (Comparison) Sorting is \(\Omega(n \log n) \)
- This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time!

Lower bound on Height

- A binary tree of height h has at most how many leaves?
 \(L \leq \) __________
- A binary tree with L leaves has height at least:
 \(h \geq \) __________
- The decision tree has how many leaves: ______
- So the decision tree has height:
 \(h \geq \) __________
Lower bound on Height

- A binary tree of height \(h \) has at most how many leaves?
 \[L \leq 2^h \]
- A binary tree with \(L \) leaves has height at least:
 \[h \geq \log_2 L \]

The decision tree has how many leaves: \(N! \)
- So the decision tree has height:
 \[h \geq \log_2 N! \]